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A B S T R A C T   

Recognizing and remembering social information is a crucial cognitive skill. Neural patterns in the superior 
temporal sulcus (STS) support our ability to perceive others’ social interactions. However, despite the promi-
nence of social interactions in memory, the neural basis of remembering social interactions is still unknown. To 
fill this gap, we investigated the brain mechanisms underlying memory of others’ social interactions during free 
spoken recall of a naturalistic movie. By applying machine learning-based fMRI encoding analyses to densely 
labeled movie and recall data we found that a subset of the STS activity evoked by viewing social interactions 
predicted neural responses in not only held-out movie data, but also during memory recall. These results provide 
the first evidence that activity in the STS is reinstated in response to specific social content and that its reac-
tivation underlies our ability to remember others’ interactions. These findings further suggest that the STS 
contains representations of social interactions that are not only perceptually driven, but also more abstract or 
conceptual in nature.   

1. Introduction 

Social content is a driving factor of human memory and has a pro-
found effect on social behavior. Social cognitive brain regions, including 
the medial prefrontal cortex (mPFC), temporoparietal junction (TPJ), 
and superior temporal sulcus (STS), are fundamental to social memory. 
These regions are activated during social memory tasks (Mitchell et al., 
2004; Meyer and Collier, 2020) and their functional connectivity during 
rest predicts the quality of social memory consolidation (Meyer et al., 
2019; Collier and Meyer, 2020). Moreover, brain regions associated with 
social cognition overlap with areas that have long been implicated in 
general episodic memory and event retrieval (Spreng and Grady, 2010). 
Robust neural signals across and within subjects in the mPFC, TPJ, and 
STS during event encoding are linked to better event memory (Hasson 
et al., 2008; Simony et al., 2016; Baldassano et al., 2017; Masís-Obando 
et al., 2022). In the same regions, activity patterns present during event 
encoding are reinstated during narrative free recall (Chen et al., 2017; 
Zadbood et al., 2017; Finn et al., 2018; Masís-Obando et al., 2022). 
However, it remains unknown what aspects of event memory drive the 
reinstatement in these regions. 

While there has been much work showing shared neural patterns 
across perception and memory of specific types of visual content 
(O’Craven and Kanwisher, 2000; Wheeler et al., 2000; Reddy et al., 
2010; Pearson, 2019; Steel et al., 2021), little work has been done to 
understand the neural basis of specific social content in memory, 
particularly in naturalistic settings. Social interactions are a critical part 
of event encoding (Dima et al., 2022) and are selectively processed in 
the human STS (Isik et al., 2017; Walbrin et al., 2018), even during 
natural movie viewing when controlling for other co-varying perceptual 
and social features (Lee Masson and Isik, 2021). However, the extent to 
which these brain regions are reinstated when people remember social 
interactions, and more generally the brain basis of social interaction 
memory, are still unknown. 

Here we investigated the brain mechanisms underlying memory of 
others’ social interactions, defined as any description of a social inter-
action between two or more people, during free spoken recall of a 
naturalistic movie in fMRI. Using voxelwise encoding analyses, we 
identified brain regions whose activity was predicted by social in-
teractions during movie viewing, during free spoken recall, and cross- 
modally between movie viewing and recall. During movie viewing, 
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social interactions are most predictive of responses in bilateral STS. 
During recall, we find regions across the temporal, parietal and frontal 
cortices that are predicted by social interactions. Interestingly, we find 
high cross movie-recall prediction in a specific sub-region of the mid- 
STS, and to a lesser extent in the temporal pole and mPFC. Together, 
these results suggest that a subset of the STS is reactivated specifically 
during social interaction memory, and that this region contains high- 
level amodal representations of others’ social interactions. 

2. Material and methods 

2.1. fMRI data 

We analyzed fMRI data from a prior study (Chen et al., 2017). The 
Princeton University Institutional Review Board approved the original 
study. 16 participants provided their written informed consent before 
the experiment. Participants viewed the first episode of the Sherlock 
BBC series and then freely recalled scenes in the scanner. Three func-
tional runs of fMRI data were collected from each participant, with two 
runs of movie viewing and one run of movie recall (Fig. 1A–B). The 
duration of movie viewing was about 45 min in total, and the duration of 
the recall varied across participants. 

A. Movie Viewing. Participants watched the first episode of the 
Sherlock BBC series while their fMRI activity was recorded. B. Movie 
Recall. In a separate scan session, participants described what they 
remembered about the movie during an unguided recall session. C. 
Encoding model training on movie viewing data. We trained an 
encoding model on the movie fMRI data. We labeled perceptual (orange) 
and social-affective (green) features, including the presence/absence of 
social interactions, at each time point in the movie. The model learned a 
linear mapping (beta weights) between each feature and the time- 
resolved data in each voxel. D. Encoding model testing on movie 
recall data. To examine the shared neural code between social inter-
action perception and memory, we tested the encoding model on the 
recall data. We labeled each time point of each participants’ spoken 
recall based on whether a recalled event involved social interaction 
(green vector). To test the encoding model, we used the beta weight 
specific to viewing social interactions (βSI) to predict brain activity 
evoked by social interactions during free spoken recall by multiplying it 
with the social interaction feature of a recalled event (green vector). The 
predicted brain activity was correlated with the true activity, which 
yielded a prediction performance score (Pearson r) assigned to each 
voxel. 

2.2. fMRI data acquisition and preprocessing 

In each functional run, whole-brain images (27 slices, voxel size = 4 
× 3 × 3 mm3) were collected on a 3 T Siemens Skyra scanner with a 20- 
channel head coil. An echo-planar T2* weighted sequence was used with 
the acquisition parameters of repetition time (TR) = 1500 ms, echo time 
= 28 ms, flip angle = 64◦, and field of view = 192 × 192 mm2. 

Preprocessing included correction of slice-timing and head move-
ments, detrending of blood-oxygen-level-dependent (BOLD) signal, 
temporal high-pass filtering (140 s cut off), normalization to a Montreal 
Neurological Institute (MNI) space with voxels re-sampled to 3 × 3 × 3 
mm3, and smoothing with a 6-mm full width at half maximum Gaussian 
kernel. Preprocessed time series data were z-score standardized and 
shifted by 3 TRs from the onset to correct for the hemodynamic delay. 

2.3. Movie feature annotation 

To understand feature representations across the brain during move 
viewing, we labeled each segment in the movie with a wide range of 
perceptual and social/affective features. Perceptual (visual and audi-
tory) features included human annotations for indoor versus outdoor 
scenes, the presence of written words, and the presence of music, as well 
as algorithmically extracted features for the output of the fifth layer of 
the Alexnet DNN, hue, saturation, and pixel values, motion energy, the 
presence of a face, audio amplitude and audio pitch. 

Two human raters also labeled a range of social-affective features in 
the movie, including the presence versus absence of a social interaction, 
whether or not a character was speaking, and whether or not a character 
on screen was engaged in mental state inference (or theory of mind). 
Finally, we used valence and arousal ratings from each scene, which 
were labeled by 119 participants on a Likert scale, in a prior study (Kim 
et al., 2020). The model trained on movie viewing data included all of 
these features to account for the variance explained by features that 
correlate with social interaction, such as the presence of faces and 
speaking (Fig. 2). This approach is better suited for assessing the 
contribution of the social interaction feature in predicting neural re-
sponses recorded during movie recall while taking into account corre-
lating features. More details about the labeling procedure and 
distribution of features across the movie can be found in our original 
study (Lee Masson and Isik, 2021). 

2.4. Audio transcripts and recall feature annotation 

Audio recordings made during free recall were transcribed in the 

Fig. 1. Experimental procedure and cross-modal encoding framework.  
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original study (Chen et al., 2017). We labeled the presence versus 
absence of social interactions at each time point of each participant’s 
recall. First, we divided transcripts into sentences. Next, using a 1–5 
scale, two human annotators judged whether each sentence described a 
social interaction (Is a participant talking about a social interaction? 
1-strongly disagree, 5-strongly agree). Ratings were averaged and binar-
ized (scores below 3 were labeled as non-social; scores above 3 were 
labeled as a social interaction). Note that judgments from the two an-
notators were strongly correlated (r = 0.8). 

2.5. Movie voxel-wise encoding model 

Using cross-validated encoding analyses in each individual subject 
(Fig. 1), we learned a linear mapping between the presence of social 
interactions (in addition other labeled perceptual and social movie 
features) and brain activity during movie viewing (model training), and 
then examined whether the same linear mapping could link the presence 
of social interactions to brain activity in held out movie data or, in the 
cross-modal case, recall data (model testing, see below). 

Specifically, we trained an encoding model consisting of the above 
described perceptual and social-affective features of the movie (Fig. 1C). 
In each individual subject, a beta weight for each feature and voxel was 
estimated during training to link movie features to fMRI responses 
during movie viewing using 90% of the data (Lee Masson and Isik, 
2021). Training data was divided into five folds. Four folds (72% of the 
training data) were used to estimate beta weights and optimize the 
regularization parameter. The remaining fold (18% of the training data) 
was used to select the values that produced the smallest mismatch be-
tween predicted and actual voxel-wise neural responses. After the beta 
estimation and regularization parameter optimization, the performance 
of the model was evaluated using unseen data from either the remaining 
10% of movie data or entire recall data. This evaluation process was 
repeated ten times, and the performance was averaged across all 
repetitions. 

We used linear banded ridge regression to account for high- 
dimensional features (including the output of a deep neural network) 
and multiple collinearities between features. Specifically, we used two 
different ridge penalties: one for the high-dimensional DNN features and 
a second for every other one-dimensional feature. To remove unreliable 
voxels, we excluded voxels outside of the brain mask based on inter- 
subject correlation (ISC) values (Fig. 3). This mask only included 

voxels showing shared stimulus-evoked responses across participants 
during movie viewing (ISC r value > 0.25). The threshold of r value was 
taken from previous work with the same Sherlock movie viewing dataset 
(Baldassano et al., 2017). 

To examine social interaction representations during movie viewing, 
the learned beta weights were multiplied by the social interaction 
feature to predict BOLD responses in held-out movie viewing data. We 
calculated the prediction performance scores based on the similarity 
(Pearson r) between the true BOLD and estimated BOLD signals for each 
participant and reported average within-subject prediction. 

Since the underlying distribution of the data were unknown, statis-
tical inference was made (for this and all subsequent encoding analyses) 
with a sign permutation test across subjects (5000 iterations). Sign 
permutation can replace bootstrap permutations, and come with a lower 
computational cost without loss of statistical sensitivity. Both non- 

Fig. 2. Matrix showing pairwise Spearman rank correlation between movie features. Cells contains Spearman r values and are color-coded (red: positive 
correlation; blue: negative correlation). 

Fig. 3. Inter-subject correlation (ISC) during movie viewing. It displays the 
group averaged r-values. Excluded voxels (r < 0.25) are shown in black. 
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parametric methods produce similar results (Lindquist et al., 2009), and 
sign permutations are typically used in RSA and MVPA studies to 
conduct nonparametric group-level statistics (Cichy et al., 2016). Note 
that the current method does not allow us to determine if each subject 
shows significantly better than chance prediction accuracy, as we base 
our conclusions on group-level permutation. One-tailed P values were 
calculated and adjusted with false discovery rate (FDR) correction. The 
average prediction performance was thresholded at P FDR < 0.05 and 
visualized on the cortical surface using the CONN software (Whit-
field-Gabrieli and Nieto-Castanon, 2012). 

2.6. Recall voxel-wise encoding model 

For the recall model, we trained an encoding model to link the 
labeled social interaction feature to voxel-wise responses in the recall 
data using standard ridge regression (as there was only one predictor). 
We trained the model on 50% of the data and tested it on the held-out 
50%. All other procedures were the same as the within-movie encod-
ing model. 

2.7. Cross-modal (movie-recall) encoding model 

To evaluate shared voxel representations across movie and recall, we 
took the encoding model trained on movie data with all labeled features, 
described above, and asked how well it could predict neural responses to 
social interactions in recall. Specifically, during testing, the beta weights 
learned for viewed social interactions were multiplied by the social 
interaction recall feature (the presence vs absence of social interactions 
during recall) to predict the BOLD responses recorded during movie 
recall (Fig. 1D). 

3. Results 

3.1. Neural responses to viewed social interactions in a natural movie 

We extracted the learned beta weights in each voxel for the presence 
of a social interaction to investigate the representation of social in-
teractions during movie viewing, while accounting for all other co- 

varying labeled features. The extrastriate body area (EBA), bilateral 
STS, posterior medial cortex (PMC), and mPFC showed increased acti-
vation to scenes with social interactions, as observed by their positive 
beta weights (Fig. 4A). In contrast, scenes without social interactions 
activated brain areas located in visual regions across the ventral and 
dorsal pathways, including the inferior temporal gyrus and the inferior 
parietal lobe, as observed by these regions’ negative social interaction 
beta weights. As a stronger test of social interaction representations, we 
asked if the learned beta weights for social interaction can predict neural 
responses in held-out movie data. We find significantly above chance 
prediction in ventral, parietal, and prefrontal cortex, with the strongest 
prediction bilaterally in the STS (Peak accuracy found at the MNI co-
ordinates X, Y, Z = − 60, − 27, − 3 and 51, -33, 0) (Fig. 4B). These results 
confirm previous studies reporting the involvement of visual and social 
brain areas, particularly the EBA (Abassi and Papeo, 2020) and STS (Isik 
et al., 2017; Walbrin et al., 2018; Lee Masson and Isik, 2021), in social 
interaction perception. 

3.2. Neural responses to remembered social interactions 

During recall, participants spent on average 57% (range 48–68%) of 
their time describing remembered social interactions, further under-
scoring their prominence in memory. To investigate the neural basis of 
these social interaction memories, we trained a separate encoding model 
to predict fMRI data based on the presence versus absence of social in-
teractions in each subject’s recall data. The learned beta weights for 
social interactions in recall had some similarities to the beta weights 
learned on movie viewing data but were largely non-overlapping 
(Fig. 5A). In particular, the strong responses in person-perception 
areas like pSTS and EBA that were observed in the movie viewing 
data were not highly weighted in the recall data. Instead, the highest 
loadings were observed in right anterior STS and the precuneus. 

Activity in these regions was also well predicted by the recall 
encoding model in held-out test data (Fig. 5B). Several regions that have 
been shown to be involved in event-specific narrative recall, including 
the middle occipital gyrus and parietal cortex (X, Y, Z = − 36, − 84, 36; X, 
Y, Z = 42, − 75, 33), STS (X, Y, Z = − 57, − 48, 15; X, Y, Z = 45, − 36, − 3), 
middle frontal gyrus (X, Y, Z = 27, 15, 54), and posterior medial cortex 

Fig. 4. Social interaction prediction (within modality) during movie viewing. A. Social interaction weights during movie viewing. Learned beta weights for 
the presence of social interactions estimated from full movie viewing encoding model mapped on an inflated cortical surface (masked to only include voxels with 
significant inter-subject correlation). The social interaction feature loads positively on voxels in EBA, STS, mPFC, and precuneus, shown yellow/red. Negative 
loadings are shown in blue/purple. B. Social interaction prediction during movie viewing. After false discovery rate (FDR) correction, the voxels that are 
significantly predicted (correlation, Pearson r) by social interactions in held-out movie viewing data are mapped on inflated cortices. Prediction accuracy was highest 
in bilateral STS. 
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(PMC) (X, Y, Z = − 9, − 54, 33), were also well predicted by our social 
interaction recall model. Prediction in the parietal cortex was likely due 
to the absence of social interactions, as indicated by the negative beta 
weights in that region (Fig. 5A), while all other regions are likely due to 
the presence of social interactions. It is important to note though that 
these predictions are less controlled than our movie viewing results, as 
recall varied from participant to participant and since no other features 
were labeled and fit in the recall encoding model. 

3.3. Shared neural responses while viewing and remembering social 
interactions 

We next investigated our central question: whether the linear 

mapping learned to link social interactions with brain activity during 
movie viewing (βSI_movie, Fig. 6A), could also predict brain responses to 
the presence of social interactions during recall (Fig. 1D). Using this 
cross-modal paradigm, we could accurately predict brain responses to 
remembered social interactions in the right temporal pole (X, Y, Z = 51, 
9, − 33), right middle occipital gyrus (X, Y, Z = 39, − 75, 33), right 
angular gyrus (X, Y, Z = 39, − 72, 42), bilateral STS (X, Y, Z = 48, − 36, 
− 3 and − 60, − 48, 15), and mPFC (X, Y, Z = 6, 57, 12 and − 6, 54, 21) 
(Fig. 6B). Prediction in the middle occipital gyrus and the angular gyrus 
were likely due to the absence of social interactions, as indicated by the 
negative beta weights in those regions (Fig. 6A), while all other regions 
are likely due to the presence of social interactions. 

The highest prediction performance was found in the right STS for 

Fig. 5. Social interaction prediction (within modality) during movie recall. A. Social interaction weights during movie recall. Learned beta weights for the 
presence of social interactions estimated from an encoding model based on the presence versus absence of social interactions in recall mapped on an inflated cortical 
surface (masked to only include voxels with significant inter-subject correlation). The social interaction feature loads most strongly on voxels in right anterior STS 
and precuneus, shown yellow/red. Negative loadings are shown in blue/light blue. B. Social interaction prediction during movie recall. After false discovery rate 
(FDR) correction, the voxels that are significantly predicted (correlation, Pearson r) by social interactions in held-out recall data are mapped on inflated cortices. 
Prediction accuracy was highest in bilateral middle occipital gyrus, precuneus, and right STS. 

Fig. 6. Movie-trained model prediction accuracy on recall data. Panel A shows social interaction weights during movie viewing. After false discovery rate (FDR) 
correction, the voxels that are significantly predicted (correlation, Pearson r) by social interactions in recall using the encoding model trained on movie viewing data 
are mapped on inflated cortices. Prediction accuracy was highest in the right STS (panel B). 
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social interaction memory. Despite increased activity in the EBA during 
social interaction perception (Fig. 6A), we did not observe its involve-
ment in social interaction memory. Similarly, unlike previous studies on 
more general narrative perception and memory (Baldassano et al., 2017; 
Chen et al., 2017), our results did not explain the brain activity in PMC, 
highlighting the specificity of our results to social interactions. 

4. Discussion 

In this study, we investigated the neural basis of memory for social 
interactions, and the extent to which these memories reactivate the 
brain regions engaged during social interaction perception. We first 
replicated prior results showing that activity along the STS is strongly 
predicted by social interactions in natural viewing conditions (Lee 
Masson and Isik, 2021). We next found that during spoken recall, social 
interactions were most predictive of responses in precuneus and right 
mid to anterior STS. Finally, by conducting encoding model analyses 
between movie viewing and free recall data, we found that social 
interaction memory leads to significant reactivation in the mid-STS, and 
to a lesser extent mPFC and right temporal pole. 

Interestingly, the regions predicted by the cross movie-recall analysis 
are not simply an intersection of the regions that are best predicted by 
either individual model. These results add to a growing body of evidence 
suggesting memory retrieval is not simply a recapitulation of perception 
(Favila et al., 2020). For example, while large portions of the STS are 
significantly predicted in both unimodal encoding models, only a small 
subset is predicted cross-modally. Conversely, mPFC, which was only 
weakly predicted in the movie-viewing, data had significant cross-modal 
prediction. While there are other correlated stimulus factors that may 
contribute to prediction within movie or within recall data, these factors 
are absent from cross-modal encoding. Thus, this approach allows us to 
isolate high-level representations of social interaction that are shared 
across viewing and recall. 

Our findings reveal that the STS is not merely involved in the 
perception of social interactions, but also contains amodal representa-
tions of social interactions that are engaged in the absence of any 
external stimulus. The posterior STS has been shown to be selectively 
engaged when viewing social interactions in controlled stimuli (Isik 
et al., 2017; Walbrin et al., 2018), and this activity was replicated in our 
movie viewing data (Fig. 4). Intriguingly, memory reactivation was 
found in a region more anterior along the mid-STS (Fig. 6), overlapping 
with regions showing the strongest unique selectivity to social in-
teractions during movie viewing in our prior work (Lee Masson and Isik, 
2021). This is similar to the “anterior shift” observed for memory of 
visual scene information (Bainbridge et al., 2021; Steel et al., 2021; Deen 
and Freiwald, 2022). 

Cortical reactivation for sensory memories is well established, 
particularly for perceiving and remembering images and sounds 
(O’Craven and Kanwisher, 2000; Wheeler et al., 2000; Reddy et al., 
2010; Breedlove et al., 2020), raising questions about the involvement of 
mental imagery in social interaction memory. In the current study, 
however, we did not find evidence of visual or auditory imagery asso-
ciated with low-level perceptual features. First, participants rarely 
focused on the low-level perceptual aspects of social interactions during 
free recall (Chen et al., 2017). For example, a typical sentence describing 
a social interaction event during free recall might be “An old friend stops 
him there and reintroduces himself”. This recall lacks visual and audi-
tory details, such as the orientation of the individuals’ bodies (e.g., 
facing versus non-facing) and their proximity, which play a significant 
role in perceiving social interaction (Papeo et al., 2019). Second, no 
reactivation was found in the visual or auditory cortex, not even in EBA, 
which was activated during social interaction encoding (Fig. 6A) and has 
been previously implicated in two body interaction perception (Abassi 
and Papeo, 2020). Likewise, given that the current encoding model was 
trained on neural responses from the entire movie and then tested on 
those from the entire free-recall session, STS may encode the general 

aspects of social interaction rather than treating each social interaction 
scene as a distinct event. Earlier work has demonstrated that patterns of 
neural activity in the temporal-parietal lobe, including the STS, are 
reinstated in an event-specific manner during narrative-free recall (Chen 
et al., 2017). However, further research is required to explore the extent 
to which the STS shows specificity to the exact match between 
perceiving and remembering social interaction. Similarly, future work 
may investigate whether the prediction remains accurate if the model is 
trained on neural responses to social interactions during recall and then 
applied to responses from movie viewing. In the current dataset, recall 
time is much shorter than movie viewing time. Training a model with 
limited data is unlikely to yield reliable model performance. Adopting a 
structured or guided recall task with a longer scanning duration would 
better address this question. One may also question whether speech 
production or perception associated with self-speech during recall might 
have activated the STS. Given that speech production and perception do 
not vary systematically between recall with versus without a social 
interaction, it is unlikely that speech explains the STS prediction found 
here. 

The question of whether the brain relies on a neural system 
responsible for general memory (semantic memory) to support social 
knowledge (memory for people and social behaviors) has been growing 
in social neuroscience (Binder and Desai, 2011). Our findings on the 
re-activation of the STS and its absence in the PMC suggest that social 
interaction retrieval may rely on specific networks of social brain re-
gions. Prior work in episodic memory has either used simple stimuli to 
study specific social content (e.g., emotional faces and personaly 
familiar versus unfamilar faces), revealing the role of the anterior tem-
poral pole in person-related social memory (Olson et al., 2013). Our 
work builds on prior findings suggesting that the neural mechanisms 
underlying memory retrieval may be content-specific. Further research 
is needed to elucidate how different types of social and non-social 
content are represented during memory retrieval. 

Naturalistic approaches have been used to link between event 
encoding and memory more generally. Both approaches have high-
lighted the importance of cortical social brain regions, including STS, 
the temporal pole, and mPFC identified here. But it has been challenging 
to link naturalistic approaches with specific social content due to the 
complexity of the stimuli used in naturalistic neuroimaging (Redcay and 
Moraczewski, 2020; Meyer, 2023). While encoding model approaches 
are being increasingly used to link features to neural activity during 
movie viewing (Chang et al., 2021; Lee Masson and Isik, 2021; Thornton 
and Tamir, 2021), this is the first time such an approach has been used to 
isolate the neural representations for the reinstatement of specific fea-
tures in memory. This approach can be generalized to content-based 
analyses of other aspects of social and episodic memory. 

The specificity provided by our approach yields novel insight into the 
brain basis of social memory and contextualizes prior findings with 
natural stimuli. The brain areas re-activated by remembering social in-
teractions are only a subset of those previously identified in high-level 
event retrieval (Baldassano et al., 2017; Chen et al., 2017). Notably 
absent is the PMC, which has been frequently reported in memory 
reactivation studies (Baldassano et al., 2017; Chen et al., 2017). The 
PMC may engage in more general event memory or features orthogonal 
to social interaction. This is in line with prior work suggesting two 
distinct systems for memory retrieval: the anterior temporal network for 
processing person-related information, and the posterior medial 
network for processing place-related information during recall (Reagh 
and Ranganath, 2023). The current work identifies one key feature of 
person-related memory, social interactions, that is processed in the 
anterior temporal network and STS. Future work is needed to under-
stand how the neural representation of social interaction content in the 
STS is integrated with other types of person-related memory and more 
general event representations. 
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