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Highlights
Recognizing the social interactions of
others is fundamental to everyday life.
We argue that core components of a
social interaction can be extracted by
the human visual system.

The visual system represents visual
precursors of social interactions, social
interactions themselves, and even some
higher-level features of interactions.

Computational neural network models
Seeing the interactions between other people is a critical part of our everyday
visual experience, but recognizing the social interactions of others is often con-
sidered outside the scope of vision and grouped with higher-level social cogni-
tion like theory of mind. Recent work, however, has revealed that recognition of
social interactions is efficient and automatic, is well modeled by bottom-up com-
putational algorithms, and occurs in visually-selective regions of the brain. We
review recent evidence from these three methodologies (behavioral, computa-
tional, and neural) that converge to suggest the core of social interaction percep-
tion is visual. We propose a computational framework for how this process is
carried out in the brain and offer directions for future interdisciplinary investiga-
tions of social perception.
of social interaction recognition match
human judgements using only visual in-
formation and bottom-up architectures.

Social interactions activate visual re-
gions of the brain that are functionally
dissociated from other social visual
stimuli and from social cognitive pro-
cesses like theory of mind.

Applying a vision science approach to
social interaction recognition can ad-
vance our computational and mechanis-
tic understanding of this critical human
ability.
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Recognizing core components of a social interaction
Sitting in a coffee shop, you see two people walk in. Immediately, you know that they are together
and that they are arguing even though you cannot hear their voices and their faces are largely
obscured. Incredibly complex computations are required to recognize and understand this
social interaction (see Glossary), but growing evidence suggests that the most fundamental
of these abilities rely primarily on visual computations.

Recognizing others’ social interactions is a critical part of the human experience. This ability
develops early in infancy [1] and guides howwe act in the social world. In the first year of life, infants
draw inferences fromobserved social interactions that inform their preferences [1] and potential so-
cial partners [2]. Non-human primates can also recognize social interactions even in minimal visual
displays [3] and base important decisions about kinship and hierarchy on these observations [4].

We have known since the early work of Heider and Simmel [5] that this rich information about
social interactions can be extracted from simple visual cues. However, these abilities have primarily
been discussed in the context of recognizing each individual agent as being animate [6,7] or goal
directed [8–10] rather than recognizing the interactions between agents. In fact, the ability to
recognize social interactions is usually grouped with higher-level aspects of social cognition, like
mentalization [11–14] and thought to require complex social inference. However, emerging
evidence suggests that recognizing social interactions is fast, automatic, evolutionarily adaptive,
and thus unlikely to rely solely on complexmental models.While there is clearly a mentalistic aspect
to understanding others’ social interactions, here we argue that recognizing core components of
social interactions is visual in nature.

This core recognition includes detecting interactions (based on both physical and communicative
contingencies) and extracting their valence and goal compatibility (e.g., cooperation vs. conflict or
helping vs. hindering). These aspects of social interactions can be considered analogous to core
object recognition [15] or scene gist [16]. Critically, they go beyond visual social primitives
such as the distance between agents, the extent to which they are facing, and their contingent
motion (Figure 1). Some evidence even suggests that higher-level information about the meaning
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Figure 1. Social interaction representations in the visual system. We argue that the visual system represents not only
social primitive of social interactions (top row), including inter-agent distance, facingness, and contingent motion, but also
higher-level ‘core components’ of a social interaction (bottom row), including detecting physical and communicative
interactions and valence or goal compatibility. The information in each category is roughly ordered by increasing
complexity from left to right.
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Glossary
Bottom-up: bottom-up processing is
direct mapping between a stimulus and
a particular feature of interest without
generative processing or external
top-down knowledge. This does not
entail the absence of recurrent
processing within a processing stage,
distinguishing bottom-up from strictly
feedforward processing.
Core components of social
interactions: detecting the presence of
a social interaction based on physical or
communicative contingencies. This
definition extends beyond visual social
primitives and also includes extracting
some features of the interaction such as
valence or goal compatibility.
Facing dyads: minimal images of
human bodies facing towards one
another without contextual information.
Generative inverse planning: a
computational framework that aims to
recognize information about agents
by inverting an internal model of the
physical and social world.
Inductive bias: built-in assumptions or
knowledge a learner uses for more
effective generalization.
Second-person social interactions:
a social interaction involving the
participant.
Social chunking: grouping of two or
more agents (depicted as bodies, faces,
or point light figures) into a single unit
during visual recognition.
Social interactions: actions between
two or more people that are directed at
and contingent upon each other. Unless
specified, we focus here on third-person
interactions (i.e., observations of others’
interactions, not involving the participant).
Social primitives: visual cues to the
presence of a social interaction, which
include inter-agent distance, whether
agents are facing one another, and their
motion congruency.
Sociality: the extent to which a person’s
action is directed at another person.
of an interaction, including the type of interaction (e.g., talking vs. dancing) and social roles
(e.g., agent vs. patient), may also be extracted visually. However, explicit representations of peo-
ple’s mental states (e.g., wondering why the couple in the coffee shop is fighting) rely on theory
of mind and thus fall outside of this definition [17].

Importantly, when we discuss visual information, we are not simply talking about low-level sensory
features like contrast or motion. We also do not mean information that is extracted by the visual
system and then processed cognitively. Instead, we are referring to an exciting middle ground
that suggests our visual system contains rich, abstract representations of social interaction that
go beyond low-level correlates of these representations [18]. We believe the visual system forms
these representations based on hierarchical computations of visuospatial and motion cues; thus
our arguments apply to social interactions that are based on relatively fast spatiotemporal contin-
gencies, occurring on the order of less than one second, and happen in close physical space.
Interactions like collaborating on a work project (long time-scale) or texting (spatially far) fall outside
the scope of our arguments. Our arguments also focus specifically on social interactions, which
differ from both object–object and person–object interactions in terms of low-level visual properties
(e.g., social interactions are often highly dynamic and involve different motion patterns than physical
interactions) and subsequent high-level processing.

We review interdisciplinary evidence in support of visual representations of social interactions
across different levels of analysis [19]. First, a growing body of behavioral work suggests that
recognizing social interactions is a computational goal of the visual system. Algorithmically,
emerging evidence suggests that human social interaction perception is well modeled by
bottom-up, discriminative models. Neurally, social interactions are processed in a manner
that is hierarchical like other aspects of vision, overlapping with visual processing streams,
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and distinct from the theory of mind network. This converging evidence suggests that
seemingly high-level aspects of social interactions are extracted by largely visual processes.

Visual signatures of social interaction recognition
The distinction between vision and cognition has been discussed extensively [7,20]. While visual
percepts and higher-level judgements often covary, perception has many distinctive behavioral
hallmarks, including rapid and automatic processing, attentional capture, efficient visual search,
and recognition advantages. Using these approaches, researchers have found that many
high-level attributes, including animacy [21,22] and causality [23], may in fact be extracted
perceptually, and recent evidence has argued that such visual processing occurs not only for
single entities but also their relations [24]. In the following sections, we outline the behavioral
evidence that social relations in particular are processed visually.

Visual processing of social primitives
Recognizing social interactions requires first detecting two or more animate agents [25] and then
next detecting visual cues indicative of social interactions such as whether agents are facing one
another [26–28] and their motion congruency [21,29]. We have termed these social visual cues
social primitives. While detecting at least one social primitive is necessary for recognizing a social
interaction, social primitives alone do not constitute an interaction.

A fast-growing body of work has shown facing dyads (bodies and faces) are subject to many
effects that are hallmarks of perceptual processing. Facing bodies are recognized significantly
better than bodies facing away from each other and are subject to an inversion effect where
their recognition is significantly diminished when inverted [26] (Figure 2A). Facing dyads are
also found more quickly in visual search tasks [27,30,31] and better remembered in subsequent
memory tasks [30,32]. Together, these results suggest that facing dyads are processed preferen-
tially as a visual unit (for more discussion and review see [33]).

Motion congruency between agents also indicates the presence of a social interaction, and when
congruency is disrupted, the perception of the social interaction is as well. For instance, when
congruency between agents’ limb movements and the coordinated motion between agents
is disrupted, descriptions shift from those of a social interaction (dancing) to an inanimate descrip-
tion (the ‘dots were kind of paired up and they drifted to the left and right simultaneously’) [29].
Further, the perception of chasing in displays of one arrow following another is highly sensitive
to the degree of similarity of the agents’ motion [21].

Social interactions are detected visually
Detecting social interactions also shares many behavioral signatures of visual processing. Social
interactions have priority access in attention and working memory. Interacting dyads are the
predominant percept in binocular rivalry tasks [34] (Figure 2B), viewed faster and longer in free
viewing of natural images [35] (Figure 2C), and chunked as a single unit in attentional cueing
and working memory tasks [36–39]. Further, social chunking does not require verbal labeling
[38], happens automatically [39], and results in visual adaptation [40] (Figure 2D). Importantly,
these effects are enhanced by the presence of meaningful social interactions (e.g., talking and
fighting) in particular, not simply the agents being close or facing one another.

So far, we have reviewed evidence that the perception of social interactions has characteristically
visual effects, including the influence of visual manipulations on social interaction perception.
However, because visual perception is encapsulated from other aspects of cognition [20,41],
the reverse argument can also be made: if a social interaction influences other visual percepts,
Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx 3

CellPress logo


Facing Non-facing

U
p

ri
g

h
t

In
ve

rt
e
d

(A)

Interactive Non-interactive

(C) (E)

Throw-catch Give-take

(D)

Gesture 
“get down” Squat

Left eye Right eye

O
ne

 a
ct

or
Tw

o 
ac

to
rs

(B)

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 2. Visual effects for social interactions are observed across a range of stimuli and paradigms. (A) Facing
dyads (top left) are recognized better than non-facing dyads (top right), but this advantage disappears when stimuli are
inverted (bottom row) [26]. (B) Social interactions conveyed via physically contingent motion are the predominant stimulus
perceived during a binocular rivalry task [42]. (C) In free viewing of natural images, people interacting (blue, left) are looked
at faster and longer than objects (orange) or pairs of people not interacting (blue, right) [35]. (D) Adaptation effects are
observed not only when someone views repeated presentations of a given action but also for the contingent social action
of the adapted action, like throw and catch or give and take [40]. (E) Communicative interactions conveyed by point light
dyads are recognized more accurately than individual actions [44].
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it is evidence that social interactions are also visually perceived. Along these lines, the presence of
a social interaction has been found to influence the visual discrimination of agents [42] as well as
causality perception [43].

Most of the aforementioned studies investigate actions with physically synchronous motion
(e.g., dancing or fighting, Figure 2C,D). One may argue that such motion-driven effects are not
truly social. However, using point light walkers, Manera and colleagues [44] found that the
presence of communicative actions (e.g., gestured ‘sit down’ or ‘help yourself’ and subsequent
responses, Figure 2E), which lack physically synchronous motion, also enhance the visual
discrimination of agents. These results suggest that the visual effects described hold for more ab-
stract depictions of communicative interactions.

Automatic extraction of higher-level meaning of interactions
Emerging evidence suggests that the visual system not only detects social interactions but is also
sensitive to features of interactions. In very brief, masked presentations, the class of an interaction
(e.g., pushing) is automatically extracted even when it is task irrelevant [45]. Other studies
suggest, however, that these visual category distinctions may happen only for privileged socially
relevant categories (e.g., ‘chasing’ vs. other kinds of ‘stalking’ [21] or ‘giving’ vs. ‘taking’ [46]).
Beyond categorization, the social role of the agents in the interaction (i.e., agent vs. patient or pusher
vs. person who was pushed) is also perceived in brief, masked presentations even when attention is
diverted to an orthogonal task [45,47]. Thus, there is evidence that at least some social interaction
categories and roles of the agents in the interactions are automatically processed.
4 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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There is also preliminary evidence that valence or moral judgments of interactions can be
extracted visually. Infants [1,48] and non-human primates [3] perceive the valence of an interac-
tion (‘help’ vs. ‘hinder’) and use this information to form preferences and guide actions (Box 1).
The extent to which this is visual or the result of a moral core [11,14] is debated, although recent
computational work suggests these distinctions may be driven by visual statistical associations
(computational algorithms and Box 2). Using a causality paradigm, researchers found evidence
that whether an agent is blame-worthy is also visually determined [49]. However, in this study
the blame-worthy ‘agent’ was a car crashing into a person, and the extent to which this is
perceived as a social interaction is an open question.

Computational algorithms for recognizing social interactions
Having outlined the rich visual representations supporting social interaction recognition, an open
question is how this information is extracted by the visual system. Computational models can
Box 1. Phylogenetic origins of social interaction recognition

While this article focuses on evidence that human adults recognize social interactions in a visual manner, here we briefly
review evidence that both infants and non-human primates perceive and make inferences based on the interactions of
others and offer preliminary evidence that this ability may be visual. In a seminal study, preverbal infants were found to
understand the social interactions of other agents [1,48] (Figure I). Later research has shown that like adults [36–39],
infants perform social chunking to increase working memory capacity [109]. Further, preverbal infants understand the
rationality and goals of social actions [110,111] and form expectations about how a stranger will interact with them based
on observed third-party interactions with their caregiver [2]. There is also emerging evidence that infants are sensitive to
social primitives, including proximity [112], facingness [113], and motion congruency [112], and assignment to social
groups may be based on these visual cues [112]. More research is needed to elucidate the extent to which social interac-
tions are processed visually in infancy, but an interesting open question is how an early developing perceptual ability may
be bootstrapped for later emerging cognitive abilities like theory of mind.

Social interaction recognition is also sharedwithmonkeys [114,115] and apes [3,116–118]. Apes in particular have been found to
base future actions on their perceptions of interactions [3,116–118]. There is little research investigating the visual mechanisms
underlying this ability as this literature largely focuses on social interaction recognition as a precursor to theory of mind (see
[86,119] for examples). However, one study in primates does suggest that the underlying mechanism may be visual in nature.
Atsumi and colleagues [115] showed stimuli similar to Gao and Scholl [21] depicting animated shapes engaged in chasing inter-
actions to Japanese macaques (Macaca fuscata). The macaques were not only sensitive to the presence of social interactions,
they were also sensitive to the motion congruency cues of the chaser and agent being chased. Further, macaque responses
matched human responses across the different motion congruency conditions. This provides exciting, preliminary evidence that
the visual basis of core social interaction perception may be shared broadly among primates, although with some possible
differences (see [120] for counter examples).

TrendsTrends inin CognitiveCognitive SciencesSciences

(A) (B)

Figure I. Social interaction stimuli used in studies of infants and apes. Infants [1,48] and bonobos (Pan paniscus)
[3] can recognize social interactions and show subsequent preference for helping (infants) or hindering (bonobos) agent
after viewing visual depictions of social interactions. These displays include (A) one agent helping another up a hill
(adapted from [1]), or (B) an agent unsuccessfully helping another open a box (adapted from [48]).
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Box 2. Cue-based versus mentalistic accounts of social interaction recognition

In the past, perceptual or ‘cue-based’ accounts of howhumans recognize social interactions (mostly focused on infants’ reaching
preference for helping agents, see Box 1) have been largely dismissed based on two main arguments. First, infants can consis-
tently recognize social relationships across a range of visual scenarios (see Figure I in Box 1). Second, when infants are presented
with perceptuallymatched scenarioswhere one agent is replacedby a visuallymatched inanimate object (e.g., a red circlewithout
eyes), helper preferences go away. Along similar lines, nearly identical visual events like giving and taking are differentially repre-
sented by infants based on their social nature (giving, in contrast to taking, necessitates a social interaction) [121]. This has led
many to argue that instead infants rely on theory of mind (or an innatemoral core [14]) to recognize social interactions. Suchmen-
tal inference is often modeled with generative inverse planning models, which use explicit world knowledge of agents’ goals and
the physical world to interpret social scenes [66] (Figure IA). In these models, judgements about a social interaction are made by
inverting a generativemodel of agents’ interactions based on their goals and the physics of the world (i.e., comparing observed
social scenes to different generated hypotheses from an internal world model). While there is now clear evidence that infants
can use theory of mind to reason about social relationships when visual information is not diagnostic [14,122], we argue that
prior cue-based accounts of interaction recognition have been overly simplified. Our visual system can extract information
about agents, their intentions, and physical scenarios [7]. These higher-level visual features may serve as input to a sys-
tem that then extracts social relationships in a bottom-up manner, even if the initial visual cues are not directly predictive of
social interaction judgements (see Figure 3B inmain text). Recent neural networkmodels have been able tomodel many of these
abilities using purely bottom-up computations without explicit simulation or representations of agents’ mental states and the
physical world [67,70] (Figure IB, computational algorithms).
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Figure I. Mentalistic versus cue-based accounts of social interaction recognition. (A) A common computational
framework for modeling social interaction recognition with theory of mind, is generative inverse planning (figure adapted from
[123]). Models implementing this framework aim to invert a generative model of agents’ goals and actions. They first extract
visual information about agents (e.g., their position, size, velocity, animacy) and then generate hypotheses about their social re-
lationship and goals using computational theory of mind [64–66]. They next perform simulations about how the social scene
would play out under different hypotheses (requiring explicit world knowledge that is often implemented with a physics simulator)
and make a prediction about the viewed scene based on matched to hypotheses. (B) In contrast, a purely bottom-up model
would extract the same visual feature of agents and use that to directly predict the social relationship without any explicit hypoth-
esis generation or knowledge of agents’ mental states. These are commonly implemented in neural network or connectionist
models [67,71]. Prior cue-based accounts have ignored the possibility of additional visual processing and sought to predict
interactions directly from visual information about the agent.
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serve as an existence proof that a particular type of input information or algorithm is sufficient to
solve a given task. In the following section, we review the types of algorithms that artificial intelli-
gence (AI) and computer vision research have used to recognize social interactions. We
present emerging evidence that: (i) visual social primitives are crucial precursors to social interac-
tion recognition, and (ii) this task can be successfully modeled using visual algorithms without the
need for higher-level cognitive models of mental state inference.
6 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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Bottom-up, discriminative models of high-level vision
To frame the following review and arguments, we first consider the question: what types of
algorithms or computational models should be considered visual? Historically, visual processes
are modeled with hierarchical, feedforward algorithms based on the architecture of visual cortex
[50]. This is a known oversimplification [51] and more recent models of high-level vision include
recurrence [52,53]. These algorithms, however, are still discriminative, meaning observations
are directly mapped to a representation of a particular target in a bottom-up manner. In contrast,
top-down, generative models aim to learn representations of the factors that generated the
observed image. To recognize a particular target (like an object), generative models internally
simulate possible observations (e.g., by rendering different 2D scenes from different possible
3D shapes and viewing conditions) and compare the true observation with their internal simula-
tions to select the correct target. This process of ‘inverting’ a generative model is usually done
using Bayesian inference [54,55], and these models of vision are often referred to as ‘inverse
graphics’ or ‘analysis by synthesis’ approaches [56,57]. The extent to which such generative
processes play a role in different aspects of high-level vision is an interesting open question
[58]. In contrast to this approach, we argue that social interaction recognition can be solved spe-
cifically via discriminative or bottom-up (though not necessarily strictly feedforward) visual algo-
rithms without the need for such generative processes.

A model does not have to be fully unstructured to be considered visual. While end-to-end learning
systems with little structure (like deep neural networks) can solve most vision problems with
enough training data, we know that humans use inductive biases to simplify learning and improve
generalization [59,60] and that some inductive biases are present in the visual system.We consider
models with inductive biases that can be extracted by the visual system (e.g., social primitives [33]
and relations [24], both described later) to be visual. Models with added information
extracted outside of the visual system (e.g., mental states) are considered extravisual.

Visual social primitives help computer vision systems recognize social interactions
Unlike other aspects of visual recognition, social interactions (and social scene understanding
more generally) have historically received relatively little attention from the AI community. Recently,
however, social interactions have been identified as a critical area for future AI research [61] and AI
and computer vision researchers have increasingly studied social interaction recognition. This
work has revealed that several of the visual social primitive features identified by cognitive
psychologists improve computer vision systems’ ability to recognize interactions. For example,
adding gaze direction into motion-based computer vision models improves detection of social
groups [62]. In addition, a model based on posture, inter-agent distance, and facingness can
accurately predict human judgements of social groupings in static and dynamic scenes [63].

This work suggests that systems that explicitly represent social primitives in their input do better
than unstructured end-to-end learning systems at detecting interactions, adding to the mounting
behavioral evidence that social primitives are critical precursors to detecting interactions. This
precursor strategymay be particularly important since the computer vision field does not currently
have the type of large-scale datasets of social actions used in learning other visual tasks. While it
is possible that with enough data end-to-end learning systems will achieve human-level perfor-
mance without explicit representations of social primitives, the aforementioned studies point to
the computational efficiency of using social primitives as precursors to interaction recognition.

Visual versus inverse planning models of social interaction recognition
Most successful computational models of human social interaction recognition have sought
to model higher-level cognitive processes that go beyond vision. These generative inverse
Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx 7
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planning models, while related to the generative models of vision described earlier, are often
considered to be implementing a computational theory of mind [64] and thus extravisual. These
models invert a generative model of social interactions based on explicit representations of
agents’ mental states and the physical world [65,66] (see Figure IA in Box 2). Their success
over visual, cue-based models (Box 2) in matching human behavior has been provided as
evidence that humans use similar processes of mental inference to recognize social interactions.

More recent work, however, has shown that with proper inductive biases, bottom-up models
can also explain human social interaction recognition. One study developed a neural network
model to link input scenes of social interactions to output representations of agents using associa-
tive learning mechanisms [67]. Using minimal assumptions and supervision based on everyday
interactions an infant is likely to encounter (e.g., agents acting in a ‘concordant’ or physically
contingent manner aremore likely to engage in subsequent interactions), this model can reproduce
infant preferences for helping agents across a range of interaction scenarios. One outstanding
question, however, is to what extent the agent and scene information input to this model could
be extracted visually.

Indeed, standard visual deep neural network models that match many other aspects of human
visual behavior do a poor job of recognizing social interactions in images or videos [68]. However,
recent work incorporating relational inductive biases [69] into bottom-up neural network models
found that thesemodels canmatch human judgements of social interactionswith only visual input
and relatively little training data but require relational information to do so [70,71].

Developing image-computable models of human social interaction judgements hold great prom-
ise for more thoroughly characterizing the cognitive and neural computations underlying these
abilities. In addition, they present new ways to test hypotheses about how social perceptual sys-
tems interact with cognitive systems for social scene understanding. For example, a bottom-up
neural network could serve as input to a generative inverse planning system to model both inter-
action perception and theory of mind judgements in social scenes [59].

Neural basis of social interaction recognition
How might the aforementioned cognitive computations for recognizing social interactions be
implemented in the brain? While the detailed neural implementation of these processes is still
largely unknown, recent work has sought to understand the cortical organization of this infor-
mation, which can provide evidence as to what functions are processed by separate versus
overlapping neural systems [72]. In this section, we review evidence for the representation of
social interactions in visual cortex, particularly the extrastriate body area (EBA), and in multi-
modal posterior superior temporal sulcus (pSTS). We also review evidence and discuss the
extent to which these regions are distinct from those engaged in theory of mind processing
(Figure 3A).

Social primitive representations in the brain
In addition to the behavioral work described earlier, growing neuroimaging research suggests that
facing dyads are represented in visual cortex. In particular, EBA, a region in lateral occipitotemporal
cortex (LOTC) that shows selective responses to bodies versus other categories of visual stimuli
(including faces, objects, and scenes), responds more to dyads than individual bodies and more
to facing than non-facing dyads [73]. In dynamic displays of point light figures, this preference
can be seen in EBA and the pSTS [74]. EBA also shows other hallmarks of configural processing
of dyads, including susceptibility to stimulus inversion and activity that is modulated based on
behavioral measures of configural processing [75].
8 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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Figure 3. Neural computations of dyadic social interactions. (A) Approximate locations of regions in the brain representing different features of social
interactions: configuration between bodies in lateral occipitotemporal cortex (LOTC) [73–75], sociality in LOTC [76,78], and posterior superior temporal sulcus
(pSTS) [78], social interactions in pSTS [93,94], biological motion in pSTS [135], faces in pSTS [98], communication along the STS [105,133,134], and theory of
mind in the temporoparietal junction (TPJ) [136]. Select anatomical landmarks (sulci: light gray, gyri: black) are annotated: lateral occipital sulcus (LOS), inferior
temporal sulcus (ITS), middle temporal gyrus (MTG), superior temporal sulcus (STS), and superior temporal gyrus (STG). (B) A proposed computational framework
for core social interaction recognition in the human brain. To recognize social interactions, people are first detected in body and face-selective areas [some of
which are highlighted in yellow in (A)]. Next, social primitives (purple) are extracted based on the relative configuration of people in the scene. These computations
occur in regions of LOTC and pSTS (A). While detecting at least one social primitive is necessary to recognize an interaction, this information is not sufficient
(e.g., the nearby agents on the left are not interacting). This information is then transformed to recognize social interactions (teal) along the STS. We propose that
core social interaction recognition is computed primarily based on bottom-up computations (i.e., information from one stage is directly fed to the next). This does
not preclude recurrent computations that likely occur at each processing stage, particularly for recognizing interactions across time. The core components of an
interaction are then fed to higher-level cognitive regions, including areas processing theory of mind and communicative language, at which top-down cognitive
processes are engaged.
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Sociality representations in the brain
A large body of fMRI work has investigated how actions generally are represented in the human
brain. Several studies have now shown that sociality is an important organizing dimension of
action representations behaviorally and in the brain, particularly in lateral occipital visual regions.
These effects have been observed across a range of controlled fMRI studies (e.g., [76], for a
recent review, see [77]). Sociality was also identified as a key organizing dimension in data-
driven investigations of fMRI responses to naturalistic videos [78]. Sociality also explains signifi-
cant variance in unguided, intuitive behavior similarity judgments of natural videos [79]. However,
the role of sociality in explaining neural responses in other naturalistic studies has been somewhat
mixed since it is difficult to dissociate sociality from strongly covarying signals such as the number
of agents in a video [79,80]. While prior studies controlled for the number of agents [76], it remains
an open question to what extent sociality, like facingness, is a representation of social interaction
or closely correlated visual cues.
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Social interactions in the STS
Extensive neuroscience research has now revealed brain regions that respond more to people
acting together versus alone across a range of stimuli, including images [81], video clips [82],
and point light figures [83–85]. Responses are found most consistently in the pSTS. Some
studies also identified social interaction responses in the theory of mind network, including medial
prefrontal cortex (mPFC) and precuneus [13,82–84]. Similar brain networks have also been found
in non-human primates [86]. In general, interacting and non-interacting stimuli in these studies
both include two people and interactivity is conveyed through movements and configurations
beyond simple visual cues such as facingness (see Box 3 for discussion of participant-directed
social interactions depicted with single actors).

Several prior studies have also used Heider and Simmel [5] style animated shaped videos
to contrast social motion with physical interactions or random motion. These studies often
find both the STS and the theory of mind network, including mPFC, precuneus, and the
temporoparietal junction (TPJ), are activated when viewing social interactions [87–92]. How-
ever, these results are often interpreted in terms of sensitivity to animacy or goal-directed
behavior and, indeed, the contrasted shape conditions vary across these factors as well as
the presence of social interactions.

More recent studies have identified a region in the pSTS that responds significantly more to
interacting point light dyads than two agents acting independently but does not show preferential
responses to other social stimuli (like faces or false belief tasks). Similarly, nearby regions repre-
senting dynamic faces or theory of mind do not show a preference for interacting versus non-
interacting dyads [93–95]. This work suggests that when controlling for social content and task
demands, there is a clear dissociation between recognizing social interactions and theory of
mind. It is important to note that theory of mind regions in these experiments were identified
using a false belief task and that broader definitions of theory of mind include not only information
about others’ beliefs but also their goals and emotions [96,97]. While representations of goals and
emotions have also been found in the STS [98], this information appears to be in distinct
regions from those showing social interaction selectivity [93]. The functional separation between
social interactions and theory of mind can even be seen during natural movie viewing when the
two features are strongly correlated [99].
Box 3. Second-person social interaction perception

This review focuses on the perception of third-person social interactions, interactions between others that are only
observed by the participant. However, a separate body of work has investigated perception of second-person social
interactions, real or simulated interactions between another person and the participant [124]. There is evidence that
understanding the actions of a partner in an interaction is also based on visual cues. People rely on body motion to predict
the target of an interactive opponent’s reach [125,126]. Further, in an interactive context, the facing direction of other
agents towards a participant affects performance even for agents the participant is not directly interacting with and who
are therefore task irrelevant [22]. Finally, gaze direction, which has been a large topic of research for decades, is a social
visual cue. While infants are sensitive to direct gaze at birth [127], gaze following requires visual experience [128] and is
diminished when gaze is not a developmentally informative social cue such as infants born to blind parents [129]. In adults,
gaze cueing is also diminished when it can be ‘explained away’ by other social factors like gaze deflection [130], suggest-
ing the visual system is sensitive to intentions behind gaze changes.

Whether or not the extent to which perception of second- and third-person interactions have the same underlying
mechanism is largely an open question. Some of the same brain regions representing third-person interactions have also
been implicated in representing second-person social interaction. For example, third-party social interactions [93,94,99],
mutual gaze [131,132], and communicativeness of a gesture [133] or face [134] activate regions of the STS (see Figure 3A
in main text) though these have never been compared in individual subjects. Future research should investigate whether
the STS has shared representations for second- and third-person interactions.
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While the STS, particularly posterior portions, is a key region involved in dynamic visual processing
[100], it also processmultimodal information and is, thus, not purely visual. For example, some pre-
liminary evidence suggests that the pSTS may also respond to auditory stimuli depicting social in-
teractions [101,102] (see Outstanding questions). On the other hand, some work has suggested
that even lower-level visual regions, particularly EBA, may also be involved in processing social in-
teractions in point light dyads [95,103] and animated shape videos [91,104]. The latter study even
found that subjects were more likely to describe ambiguous mechanical stimuli as social than non-
social and that responses in visual cortex predicted these behavioral judgements in individual sub-
jects. Together, this evidence points to a clear involvement of visual cortex in detecting others’ so-
cial interactions and recent proposals have suggested that these posterior lateral visual regions
serve as input to the STS in a ‘third’ visual pathway (in addition to the classic ventral and dorsal
pathways) dedicated to social perception [77,100,105].

Higher-level feature representations in visual brain regions
A few studies suggest that EBA and pSTS represent not only the presence of a social interac-
tion but also higher-level judgements of that interaction. For example, neural patterns in the
EBA and pSTS can distinguish between different types of dyadic interactions [95]. In addition,
activity in pSTS can predict goal compatibility of an interaction (e.g., helping vs. hindering or co-
operation vs. competition) [93,94]. It is important to note though that this information about
goal compatibility is also decodable from TPJ in the theory of mind network. Given the low tem-
poral resolution of fMRI, it is difficult to tell from these studies alone if these help versus hinder
representations are visually driven or based on top-down signals from the theory of mind net-
work.

Social interaction representations in the theory of mind network
An alternative view argues that social interaction representations in the brain can be attributed to
mentalization and activity in the theory of mind network. Computationally, this is supported by
the generative inverse planning models described earlier. Neurally, one recent study made this
argument based onmeta-analysis of several studies investigating social interaction, action recog-
nition, and theory of mind tasks [17]. Critically, while the pSTS and TPJ are separable in individual
subjects [93], they are extremely close spatially and thus likely to be blurred together in a group or
meta-analysis. In addition, several tasks or stimuli can engage both perceptual and mentalization
systems (e.g., judging helping vs. hindering scenarios [93,94] as described earlier or watching a
natural movie [13,99]), so it is important to separate them using appropriate tasks or analyses. Fi-
nally, task demands that correlate with stimulus properties in an fMRI experiment (e.g., pressing a
button in response to interacting stimuli [84,85]) may lead to prefrontal brain activity due to
attention or preparatory motor responses. When these considerations are taken into account
(using a within-subjects design, without task confounds, and stimuli or analysis methods that
separate social interaction recognition from theory of mind), social interactions and mentalization
appear to be processed in distinct neural networks [93,99].

Some of our prior work has suggested that social interactions are represented on a relatively slow
timescale by the brain [68,79], a potential argument against visual processing. For example, one
study used tightly controlled pairs of natural images either with versus without a social interaction
and found that the presence of a social interaction could not be read out from magnetoencepha-
lography signals until at least 300 ms after image onset, a time period generally considered to be
outside the range of feedforward visual processing [68]. It is possible that the challenging nature
of these matched natural image pairs required recurrent visual processing, similar to those
engaged in challenging object recognition [53,106,107], or that the distinction of subtle gaze shifts
fall outside of core interaction recognition. Importantly, in these studies, social interaction
Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx 11
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Outstanding questions
Beyond detection and goal compatibility,
what other information about social
interactions is extracted by the visual
system? The answer to this question
will help characterize the computational-
level goals of social perception. One
promising direction may be identifying
divisions within the representational
space of social interactions in the brain
and behavior.

How do the visual system and higher-
level social cognitive systems, including
the theory of mind network, interact to
form more complex social evaluations?
Comparing computational models of
these systems with behavioral and
neural responses can help test theories
of how these systems interact.

How are social interactions represented
in other perceptual modalities? Are
neural representations for social
interactions multimodal? Preliminary
research has shown that auditory
social interactions activate similar
regions as visual presentations of
social interactions. However, more
work is needed to understand the
extent to which these are cross-
modal representations.

Are the same neural systems and
computations used to process social
interactions depicted in simplified
stimuli, such as static images or
animated geometric shapes, the
information was extracted spontaneously by the brain, even in the absence of an explicit task,
suggesting some degree of automatic visual processing.

Concluding remarks
Looking around, we cannot help but make complex inferences about the structure of the social
world. Here we present converging evidence from behavioral, computational, and neural studies
that rich, abstract information about the social interactions of others is computed by the visual
system. Synthesizing across different levels of analysis, we put forth a proposal that social inter-
actions are computed in a bottom-upmanner across different regions in the lateral visual pathway
[100] (Figure 3B). Many open questions and challenges remain (see Outstanding questions).
Critically, although we liken core social interaction recognition to core object recognition, a funda-
mental challenge remains in characterizing the computational goal of social perception. Indeed,
prior work suggests that social interactions cannot be broken down into the same taxonomy of
categories as objects [108], suggesting social interactions require more flexible representations
that might be better understood in terms of more abstract concepts. Further, additional work is
needed linking computational models that recapitulate human behavior with visuo-social brain re-
sponses and improving our mechanistic understanding of these neural computations. Finally, we
must understand how these visual social representations are integrated with information from
other perceptual modalities and higher-level cognitive systems. Interdisciplinary studies of social
interaction recognition can help bridge the gap between high-level vision and social cognition and
will be critical to understanding humans’ rich social visual abilities.
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