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Relational visual representations underlie
human social interaction recognition

Manasi Malik 1 & Leyla Isik 1

Humans effortlessly recognize social interactions from visual input. Attempts
to model this ability have typically relied on generative inverse planning
models, which make predictions by inverting a generative model of agents’
interactions based on their inferred goals, suggesting humans use a similar
process of mental inference to recognize interactions. However, growing
behavioral and neuroscience evidence suggests that recognizing social inter-
actions is a visual process, separate from complex mental state inference. Yet
despite their success in other domains, visual neural network models have
been unable to reproduce human-like interaction recognition.We hypothesize
that humans rely on relational visual information in particular, and develop a
relational, graph neural network model, SocialGNN. Unlike prior models,
SocialGNN accurately predicts human interaction judgments across both
animated and natural videos. These results suggest that humans can make
complex social interaction judgments without an explicit model of the social
and physical world, and that structured, relational visual representations are
key to this behavior.

Humans easily make social evaluations from visual input, such as
deciding whether two agents are interacting or who is a friend versus
a foe. Early work by Heider and Simmel (1944) showed that humans
can recognize rich information about others’ interactions even from
simple visual cues. The ability to distinguish between helping versus
hindering individuals in visual displays has even been found in
infants1,2 and non-human primates3. Attempts tomodel human social
interaction judgments typically rely on generative inverse planning
models4–7. Thesemodels recognize social relationships by inverting a
generative model of agent’s interactions and comparing an observed
social scene to internally generated hypotheses based on not only
visual information, but also extensive physical information about the
scene and hypothesized goals of the agents. So far, these models
provide the bestmatch to human judgments, suggesting humans rely
on similar inferential processes to recognize interactions. In their
current instantiations, however, these models are computationally
expensive and often intractable in real-world scenes where a full
physical simulation is infeasible (though it is possible to implement
these systems in a tractable manner if the correct situational con-
straints are known8).

More generally, inverse planning models necessitate the use of
explicitmental representations ofother agents’minds and the physical
world to make social judgements. While humans can clearly use high-
levelmental state inference to recognize andunderstandmany aspects
of social interactions6,9,10, especially when visual cues are non-diag-
nostic, growing evidence suggests that social interactions are also
rapidly recognized by the human visual system11. Social interactions
have been shown to receive priority access to conscious awareness in a
binocular rivalry task12, provide a perceptual advantage in visual search
tasks13,14 and, like faces, be subject to an inversion effect15. Beyond
detecting social interactions, humans also rapidly and automatically
encode event roles, such as who acted on whom, in scenes depicting
social interactions16. Neuroimaging evidence suggests that interacting
dyads are represented in visual cortex13, and are selectively processed
in brain areas separate from those associated with theory-of-mind or
mental state inference15,17,18,14. Despite this evidence, the field still lacks
good bottom-up, visual models of social interaction recognition. Even
deep learning models that achieve human-level performance in so
many other visual tasks do a poor job modeling human social inter-
action judgments4,19. It thus remains an open question to what extent
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humans rely on visual processes versus higher-level cognitive reason-
ing for social interaction recognition. (Note here that by visual we do
not mean that humans exploit very simple pixel-level information to
recognize interactions. Nor, on the other hand, do we mean visual
information that is processed by higher-level cognitive systems.
Instead, the above evidence suggests that like other high-level fea-
tures, including causality and animacy20, social interactions are also
processed within the visual system using spatiotemporal cues in a
manner that is distinct from cognitive processing21.)

A key property of social interactions is the fact that they are
relational. In order to recognize an interaction between people, you
not only need to recognize the body, pose, andmotion of eachperson,
but the relative distance, position, and motion between them22–24. We
exploit this property and introduce it as an inductive bias, in the form
of a graph structure25, to a bottom-up visual neural network model.
The result is a graph neural network (GNN) for social interaction pre-
diction that we call SocialGNN, which serves as a representational level
model of human social perception. We find that SocialGNN matches
social interaction judgments at the level of human agreement on a
dataset of animated shape videos, performs significantly better than a
matched neural networkmodel without graph structure, and is on par
with generative inverse planning models. Unlike prior models,
SocialGNNcanpredict human judgments inboth animated andnatural
videos without explicit representations of the agents’ mental states.
These findings provide important insight into how visual information
is used for human social interaction judgments.

Results
Humans recognize interactions and attribute sociality to those
interactions in animated shape videos
To investigate human social interaction judgments, we first used the
PHASEdataset26. This dataset consists of 500 animated shape videos in
the style of Heider and Simmel, where two agents are moving around
in a simple environment, resembling real-life social interactions (see
example screenshot in Fig. 1). The dataset includes a 400-video stan-
dard dataset, and a 100-video generalization set with novel environ-
ment layouts and agents with social and physical goals that are unseen

in the original 400-video set. Each video has a ground truth label for
the social interaction type between the two agents—“friendly”, “neu-
tral”, or, “adversarial”—based on the agents’ pre-defined social goals
provided to the simulator during video generation. To compare these
labels to human behavior, we collected human judgments of the social
interaction depicted in each video (Fig. 1, Supplementary Fig. 1). After
cleaning responses, we had at least 10 ratings per video, from 308
participants.

For each video, we compared the mode of the human ratings to
the social interaction label (i.e., the label derived from the social goal
used to render each video) from the PHASE dataset (Table 1). We find
that videos generated with agents having “friendly” or “adversarial”
goals were typically rated as similarly “friendly” or “adversarial” inter-
actions by our participants. However, videos rendered to depict
“neutral” goals were often rated as “friendly” or “adversarial” instead.
This suggests that humans tended to recognize interactions between
agents in a scene and attributed sociality to those interactions. For
example, if both agents had a neutral goal of taking the blue ball to the
green landmark, that may be perceived as a friendly, collaborative
interaction. This highlights an important distinction between human
judgments and the simulator used to produce the PHASE videos, as
well as the importance of using human ratings rather than default
labels from the simulator.

SocialGNN predicts human social interaction judgments in
animated shape videos
We developed a graph neural network, SocialGNN, to predict social
interactions in the PHASE videos. For each video, SocialGNN takes in a
graph representation of the visuospatial information for each frame.
The nodes in these input graphs are the entities (agents and objects) in
the frame and the edges represent relationships between the entities,
thereby incorporating a relational inductive bias (Fig. 2a). For each
video, this sequence of graphs now acts as the input to SocialGNN.

The overall network architecture (Fig. 3a) is similar to a recurrent
neural network (RNN) that at each time step processes new input
information (Gin

t) and combines it with the learned representations
from prior timesteps (Gtemporal module). It combines these

Video 2/23

You can play and pause the video as you need to. You may need to re-watch the
video in order to answer the question.

How would you describe the creatures'
relationship?

and are creatures; and are objects;

are landmarks; and are walls.

Neutral Friendly

Next

Adversarial

Fig. 1 | Exampledisplay fromtheonlinehumansubjects experiment conducted
to collect social interaction ratings for PHASE animated shape videos. Full
instructions were presented at the beginning of the experiment (Supplementary

Fig. 1) with abbreviated instructions above each video. The participants viewed the
videos and rated each video as “friendly”, “neutral”, or “adversarial”.
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representations across time and uses the representation at the final
time step to predict the type of social interaction as “friendly”, “neu-
tral”, or “adversarial” via a linear classifier. The novelty of this model
comes from its graph structure (Fig. 3b). The input node features
(Vinp

t) are various visual and spatial properties of the entities, including
2Dposition, 2D velocity, angle, size, andwhether that entity is an agent
or object. Nodes in the input graph are connected via edges (Einpt). A
binary, bidirectional edge is added between the two entities if they are
in physical contact (Fig. 2a). The input graphs also have some context
information in the form of wall and landmark positions. Importantly,
all input features and edges can be extracted from purely visual input.

We compared SocialGNN to a baseline model with the same
overall architecture and input, but without the graph structure, called
VisualRNN (Fig. 3c). Here, instead of the graph input and processing,
an RNN with long short-term memory (LSTM27) gets concatenated
features of all the entities in the scene at each time step and combines
this input with learned representations from prior time steps. At each
time step, wall and landmark coordinates are also concatenated with
entity features to provide the model with contextual information.
VisualRNN is an implementation of a Cue-Based LSTM, a standard
perceptual baseline used in similar tasks26,28. We also compared

SocialGNN with an enhanced control model: VisualRNN-Rel. For
VisualRNN-Rel, alongwith the entity and context features,we append a
relational input feature (boolean vector denoting which edges are
present) to match the binary edge information provided to the GNN.
Finally, we also compared SocialGNN and the baselines to the perfor-
mance of an instantiation of an Inverse Planningmodel, SIMPLE, which
currently achieves state-of-the-art performance on this task26. The
Inverse Planningmodel has access to all input information provided to
SocialGNN and VisualRNNmodels via its built-in physics simulator and
input state information.

We trained SocialGNN and baseline models on ten bootstrapped
train/test splits of 300/100 videos from the standard PHASE dataset,
using the human judgments as ground truth. For the Inverse Planning
model, we got the predictions for all videos and calculated the per-
formance accuracy for each bootstrap. We found that SocialGNN
predicted social interaction judgements significantly above chance,
almost reaching the level of human agreement among the raters
(Fig. 4, Supplementary Fig. 7). SocialGNN performed significantly
better than the matched visual model (VisualRNN), suggesting that
relational graphical representations allow bottom-up visual models to
make more human-like social judgments (paired permutation test
based on exact null distribution n = 1024, p =0.002). Interestingly,
simply adding relational information as an input feature to the
VisualRNN (VisualRNN-Rel) did not improve its performance.
SocialGNN even outperformed the Inverse planning model on the
standard PHASE dataset (p =0.002). Via an ablation study (Supple-
mentary Fig. 4), we found that if the agent-object edges are ablated,
SocialGNN’s performance suffers evenwhen agent-agent edges are left
intact, suggesting that the agent-object interaction information is
often essential for understanding the social interaction between the
two agents. Together, these results suggest that relational information
and graphical representations, in particular, are important and suffi-
cient for human-like social interaction recognition.

Table 1 | Human social interaction ratings vs. PHASE ground
truth social goals (500 videos)

PHASE Labels

Friendly Neutral Adversarial

Human
Ratings

Friendly 114 80 4

Neutral 12 96 4

Adversarial 3 120 67

Confusion matrix showing agreement between the mode of human ratings (y-axis) and PHASE
generator labels (x-axis) for 308 participants.
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Fig. 2 | Examples of how a graph (right) is created for a single frame (left) in a
video for the PHASE and Human Gaze Communication datasets. a For the
PHASE dataset edges are determined based on physical contact. For this example,
we see that the frame is represented as a graph using 4 nodes corresponding to the
2 agents (red and green) and the 2 objects (pink and blue). Since the green agent
and red agents are touching the blue object, we add bidirectional edges between
green and blue nodes, and red and blue nodes. b For the Gaze dataset, edges are
basedongazedirection. Thewoman in blue and theman in red, are represented via

blue and red nodes respectively. The objects in their hands (green sweater and the
glass of water) are represented via the green and gray nodes. Since the woman is
looking at the man, and the man is looking at the object in his hands, two directed
edges are added from the blue to the red node and from the red to the green
node. Because of license restrictions with the Gaze dataset videos, we use a
representative image in (b). Written consent was obtained from individuals shown
in the image to use the image in the paper.
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SocialGNN generalizes to novel visual and social scenes
To understand howwell SocialGNN generalizes to novel environments
and social actions, we trained SocialGNN and the visual controlmodels
using the standard 400 PHASE videos and tested them on the 100-
video generalization videos. While the training and testing within the
standard dataset was always done across novel videos, the physical
environments and social actions were similar across those videos.

SocialGNN again performedbetter than thematched visualmodel
with an accuracy approaching average human agreement (Fig. 5a,
Supplementary Fig. 8). Unlike the standard PHASE dataset, here the
Inverse Planning model performed better than SocialGNN. However,
this performance comes at a large computational cost. The Inverse
planning model requires thousands of times as much computing
power (asmeasured by both run-time andmemory, Fig. 5b) than either
SocialGNN or VisualRNN.

SocialGNN uniquely explains variance in human social
interaction judgements
On the PHASE dataset, we found that both SocialGNN and the Inverse
Planning model match human judgments of observed social interac-
tions (Figs. 4, 5a). To investigate if the two models contain distinct or
shared representations of the stimuli, we performed an item-wise
comparison using Representational Similarity Analysis (RSA). We cre-
ated Representational Dissimilarity Matrices (RDMs) for SocialGNN,
the Inverse Planning model, and the human judgements. To construct

the RDMs, we used the output of the last RNN step for the SocialGNN
representation, the predicted probabilities for each hypothesis for the
Inverse Planning model representation, and the distribution of ratings
per video for the human judgements’ representation. We found that
both SocialGNN and the Inverse Planning model were significantly
correlated with human judgements (Standard Set: μ(rSocialGNN) = 0.47,
μ(rInversePlanning) = 0.25, Generalization Set: rSocialGNN = 0.51,
rInversePlanning = 0.51, n = 10,000, p <0.001 for all) (Fig. 6, left). These
results are in line with both models’ high prediction performance and
further suggest that the models match not only the majority label
assignedby ratersbut also capture ambiguity in thehuman ratings (see
Supplementary Videos 1–4 for examples of model agreement and
disagreement with each other and human labels).

We also found a significant correlation between SocialGNN and
the Inverse Planning model (Standard Set: μ(r) = .24, Generalization
Set: r = .4, p < 0.001 for both). To understand the extent to which each
model captures unique variance in human behavior, we calculated
semi-partial correlations with the human ratings RDM for each model
while controlling for the other model. We found that both models
capture significant unique variance in human judgements across both
stimulus sets (Standard Set: μ(srSocialGNN) = .43, μ(srInversePlanning) = .14,
Generalization Set: srSocialGNN = 0.34, srInversePlanning = 0.33, p <0.001
for all) (Fig. 6, right). SocialGNN had a significantly higher correlation
and semi-partial correlation on the Standard Set (Fig. 6a) (p = 0.002 for
both), and both models performed similarly on the Generalizaton Set
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Fig. 3 | Model architectures. a Overall structure for SocialGNN. At each time step,
the graph representation of the video frame (Gin

t) is passed to theGspatialmodule.
The Gspatial module processes the graph and outputs a vector representation,
which is passed on to the Gtemporal module. Gtemporal module then combines
information from previous time steps and the current time step. The representa-
tion at the final time step is passed through a linear classifier to predict the social
interaction. b Details of the Gspatial, Gtemporal and Classifier modules of
SocialGNN. ϕe in the Gspatial module is a linear layer, akin to those in a standard
neural network, that receives as input the concatenated node features from nodes
on each side of an edge (Supplementary Fig. 3a), and using these, along with

context information, learns an updated representation for that edge. Updated
representations for all the edges are concatenated (Gspatial

t) and then passed to the
Gtemporal module where a long short-term memory (LSTM) unit (function ϕs)
combines information from previous time steps and the current time step to give a
new state representation (Gstate

t). The representation at the final time step (Gstate
T)

is passed through a linear classifier to predict the social interaction (Y). c Baseline
model, VisualRNN, architecture. The structure is an RNN where features at each
time step (Fint) are combined with the learned representations from previous time
steps. At the final time step, a linear classifier is used tomake a prediction about the
social interactions.
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(Fig. 6b). These results indicate that there is a significant amount of
variance in human judgments that is uniquely explained by each
SocialGNN and SIMPLE, and that the two models are learning distinct
representations.

SocialGNN recognizes social interactions in natural videos
In the real world, wewatch people interact with each other and objects
in dynamic, natural scenes. To model these real-world scenarios, we
turn to the Human Gaze Communication dataset29 (referred to as Gaze
dataset henceforth). This dataset is a compilation of 299 videos from
YouTube covering diverse social scenes. Each video is annotated with
human face and object bounding boxes, and the heading/gaze direc-
tion of each face. The dataset included human annotations of different
types of gaze communication, including “non-communicative”,
“mutual gaze”, “gaze aversion”, “gaze following”, and “joint attention”.
We bootstrapped 20 train/test splits of 224/75 videos, and divided
each video into shorter clips such that clips from the same video were
either included in the train or the test set. After preprocessing,wewere
left with ~740 video clips for training and ~215 clips for testing in each
bootstrap.

We again created graphs for each time step where nodes were
made up of agents and objects, but here edges were directed and
determined based on gaze direction (Fig. 2b). Additionally, to capture
the rich, visual information in the scene, node features were generated
by creating a bounding box around each entity and passing the pixel
values through a deep neural network (VGG19 pre-trained on
ImageNet30). Despite the drastically different input, the resulting
graphs were of a similar structure to those used in the animated shape
experiments and served as input to SocialGNN.

First, we trained the models to detect social interactions (pre-
sence vs. absence i.e., “non-communicative” vs. all other commu-
nicative gaze labels in the dataset) between two people in each video.
The SocialGNN model performed significantly better than the

VisualRNNmodels (Fig. 7a, Supplementary Fig. 5) (paired permutation
test, p <0.001, n = 10,000 resamples). We next evaluated the model’s
match to behavior on a 5-way social interaction discrimination (“non-
communicative”, “mutual gaze”, “gaze aversion”, “gaze following”, and
“joint attention”). We again find that SocialGNN performs significantly
better than the VisualRNN models (Fig. 7b, Supplementary Fig. 6)
(p < 0.001). (Since the current Inverse Planningmodel is not an image-
computable model, it cannot be included in these experiments.)

We also compared our model’s performance with that of a stan-
dard visual CNN model, VGG1930. We extracted the penultimate layer
representation from the frames of each video and trained a linear
classifier on the above two-way and five-way tasks. The VGG19 model
was significantly worse atmatching human behavior in both tasks than
SocialGNN (p <0.001), performing at chance in the 2-way classification
and slightly above chance in the 5-way classification, further empha-
sizing the benefits of relational structure for social interaction
recognition.

Discussion
We developed a computational model, SocialGNN, that reproduces
human judgments of social interactions in both animated and natural
videos using only visuospatial information and bottom-up computa-
tion. This model performs as well as a generative inverse planning
model and does so at a fraction of the computational cost without any
explicit mental inference of agents’ goals, suggesting that computa-
tions within the visual system may be sufficient for humans to recog-
nize social interactions. Interestingly, SocialGNN is not simply a neural
instantiation of the inverse planning model, and both models explain
unique variance in human judgements, suggesting humans are using a
combination of perceptual and mentalistic strategies to judge these
videos.

The SocialGNN architecture can also generalize across vastly dif-
ferent stimulus sets: one set of animated videos where social interac-
tions are based on motion trajectories and physical contact, and a
second naturalistic dataset of human gaze communication with mini-
mal motion. The graph representations and computations allow
SocialGNN to abstract away from low-level visual cues, but to do so in a
way that is still visually grounded and can thus operate on natural
videos. We note though that while SocialGNN performs significantly
above chance on both natural video experiments, it is still far from the
level of human performance in this domain. It seems likely that better
engineered node features (image-level information about the agents
and objects in each video)would improve the performanceof all visual
models. Optimizing these features is clearly an important engineering
challenge. The goal of the current work was to show that, keeping
these image-level features constant, graph processing improves net-
work performance, and we expect this overall finding to hold with
improved node features. In addition, while the same model archi-
tecture generalized across both animated and natural videos, we did
not test a single trained model’s ability to generalize, due to the dif-
ferent interaction types in the two video datasets. As a result, there is
currently no direct evidence that transfer learning will work in
SocialGNN. Further, unlike the Inverse Planningmodel, SocialGNN (like
the other neural models tested here) was trained on human data.
However, the model receives relatively little training data in each
experiment.Webelievewith the right datasets, transfer learning across
very visually different scenarios may work well, particularly if the right
type of context information is added for each dataset. Transfer
learning and optimizing context variables for different settings are
interesting areas for future research that could further improve
SocialGNN’s ability to generalize.

In thepast, the hypothesis thathumansuseonlybottom-up, visual
information to recognize social interactions has been dismissed due to
the poor performance of purely visual models4,19. A large body of work
has suggested that even infants evaluate social interactions based, not

Fig. 4 | Prediction accuracy for the type of social interaction (friendly vs.
neutral vs. adversarial) between twoagents in the PHASEdataset (chance 33%).
Box whisker plots showing each model’s accuracy across the train-test splits. The
center lines depict median accuracy, boxes middle 50%, diamond points the out-
liers, and whiskers accuracies outside the middle 50%. Significant differences are
denotedbyp-values (pairedpermutation test,n = 1024permutations, all two-tailed,
Holm-Bonferroni corrected).
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on visual processes, but an innate moral code9, which can be modeled
via a generative framework6. The prior visual and cue-based models
tested though have been overly simplistic focusing only on simple
shape and motion features. Indeed, recent work has shown that
infants’moral evaluations of social interaction scenes can be modeled
via an associative learning mechanism linking agents and actions in a
connectionist (bottom-up) framework31. However, it was previously
unknown, how this information could be computed directly from
visual input. These initial bottom-up, visual judgements may then be
refined and supplemented by higher-level cognitive processing to give
rise to the full range of humans’ rich social scene understanding.

We find that a model with only visuospatial inputs can match
human social interaction judgments when relevant inductive biases -
here in the form of relational graph structure - are introduced.
SocialGNN’s graph structure constrains the relationship between
entities in the scene, and thus allows the learning algorithm to prior-
itize one solution over others based on this knowledge. This is in line
with developmental work suggesting humans have inherited useful
inductive biases in the form of relevant data representations for flex-
ible and efficient perception and cognition32,33. Perceptual biases,
which focus a learner’s attention on what information to prioritize for
learning, could also be sufficient to produce the range of rich social
behaviorswe see in human infants. Different perceptual processesmay
have different kinds of inductive biases to structure incoming visual
information34. For example, developmentally relevant object motion
events have been shown to help computer vision systems learn about

hands and gaze direction35. Here we present a model with inductive
biases for social scene understanding. These results also have impli-
cations for AI systems, as an added human-like inductive bias allows
SocialGNN to make more human-like social judgments without incur-
ring the computational cost of existing models.

SocialGNN is inspired by a growing body of recent work in graph
neural network modeling for social behavior and multi-agent
systems4,36,37. Unlike SocialGNN, however, these models all seek to
predict agent trajectories, either as their final output or as an inter-
mediate step towards a final social prediction. In contrast, SocialGNN
does not predict agent trajectories and instead uses its graph structure
to directly predict the relationship between agents, formalizing a
crucial insight from cognitive science and development that humans
view the world in the form of objects and relations24,38. Two other
models29,39 like SocialGNN operate directly on graphs of scene entities,
but they either don’t preserve temporal information or require inter-
mediate supervision at smaller time scales. As a result, they are notwell
suited to match human behavior on extended events like the ones
tested here26.

Structured relational information, specifically in the formof graph
representations,may be crucial to human social interaction judgments
as we see that simply giving models relational information (as in the
case of VisualRNN-Rel) is not enough to reproduce human behavior.
Interestingly, the results of our ablation study further show that it is
not sufficient to just represent the relationship between two social
agents, but it is also important to represent the relationship of these

a

b

Fig. 5 | Performance on the PHASE generalization set. a Prediction Accuracy for
the type of social interaction (friendly vs. neutral vs. adversarial) between two
agents in the PHASE generalization set (100 videos). b Computational resources

(run-time andmemory) consumedby eachof these computationalmodels tomake
predictions on a subset of 25 videos.
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agents with other non-social entities (objects) in the scene to under-
stand their social interactions. This suggests that representations of
how agents interact with their physical world is necessary to gain a full
social understanding of a scene. Amajor advantage of SocialGNN is the

flexibility it provides in representations and computations over all
possible relationships in a scene, as the graph input determines how
the entities interact. Further, it uses the same set of functions across all
nodes and all edges, which may make the model capable of

a

b

Fig. 6 | RSA results on the PHASE datasets. a Correlation and Semi-partial cor-
relation between SocialGNN and the inverse planning model (SIMPLE) and human
judgements RDMs for held-out test videos in the PHASE standard set. Box whisker
plots showing each model’s correlation (left) and semi-partial correlation (right)
with human judgements across bootstraps. The center lines depict median, boxes

middle 50%, diamond points the outliers, and whiskers accuracies outside the
middle 50%. Significant differences are denoted by p-values (paired permutation
test, n = 10,000 permutations, all two-tailed, Holm-Bonferroni corrected).
b Correlation and Semi-partial correlation between SocialGNN and SIMPLE and
human judgements RDMs for the PHASE generalization set.

a b

Fig. 7 | Performance on the Gaze dataset. a Prediction Accuracy for the presence
of social interaction between two agents in the Gaze dataset. The chance accuracy
here is 50% (dotted line). b Prediction Accuracy for the type of social interaction
(“non-communicative” vs “mutual gaze” vs “gaze aversion” vs “gaze following” vs

“joint attention”) between two agents in the Gaze dataset. The chance accuracy
here is at 20% (dotted line). Significant differences are denoted by p-values (paired
permutation test, n = 10,000 permutations, all two-tailed, Holm-Bonferroni cor-
rected). All other plotting conventions follow those in Fig. 4.
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combinatorial generalization in a human-like manner25. SocialGNN
allows us to formalize and make a strong case for the theory that
humans use graph-like visual representations to extract social infor-
mation from scenes.

There are many aspects of recognizing and understanding social
interactions that go beyond vision and rely on mental models and
simulations of other agents’ thoughts, beliefs, and actions. For exam-
ple, understanding why two people are fighting or interpreting the
goal of someone else’s social actions. Integrative and dual-process
theories of social cognition propose that these slower, cognitively
laborious andmore flexible processes (Type 2 processes), are separate
from fast, efficient, and stimulus-driven perceptual processes (Type 1
processes), and both types account for different aspects of social
cognition40. A growing body of behavioral12–16, neuroscience13,17,18, and
now computational work, suggests that social interactions, and
observations of them, are a fundamental part of the humanexperience
that rely on visual processing. This work provides critical proof of
concept that social interactions can be recognized based only on
visuospatial information, and insight into the computations and
representations that underlie this ability. It remains an open question
the extent to which adults rely on visual processing versus mental
simulation to interpret different social scenes, and whether this differs
in infants and non-human primates. SocialGNN and the results pre-
sented here provide a computational framework to answer these
questions and understand the neural and behavioral representations
of social interaction scene understanding.

Methods
All studies detailed here received ethical approval from the Johns
Hopkins Homewood Institutional Review Board and complied with all
relevant ethical regulations.

PHASE dataset
The PHASE dataset consists of animated shape videos generated via a
physical simulator and hierarchical planner, where two agents are
moving around in a simple 2D environment, resembling real-life social
interactions. There are also two objects in each video that the agents
can carry/push. The environment has four landmarks and some walls,
all stationary. The agents and objects (entities) can move over land-
marks but cannot pass through the walls. The agents each have a
physical or a social goal that is input to the video generator, and both
are given eyes to lend more animacy to them. The sizes of the agents
and objects, the strength of the agents, and the layout of the walls can
all vary across the videos. The dataset includes a 400-video standard
dataset and a 100-video generalization set with novel environment
layouts and agents with social/physical goals that are unseen in the
standard 400-video set. For training and testing within the standard
set, we ran ten bootstrapped train/test splits of 300/100 videos. For
the generalization set, we trained themodel using the entire 400-video
standard set and tested it on the 100-video generalization set. Each
video is 5–25 s long. Some videos featured long time windows at the
endwith nomovement, sowe trimmed all the videos to end 2secs after
all the entities stopped moving, resulting in 2.75–25 s long videos. For
more details on the dataset see Netanyahu et al., 2021.

Human behavior experiments
To compare human social evaluations on the PHASE dataset to dif-
ferent models, we collected human judgments of the social relation-
ships between the two agents in each video, using the Prolific (https://
www.prolific.com/) online platform. Informed consent was obtained
from all participants before the experiment. Participants were given
the following instructions: You will watch some videos with creatures
moving around ina simple environment. There are twoobjects that the
creatures can carry/push. There are four landmarks and somewalls, all
stationary. The creatures and objects can move over landmarks but

cannot pass through walls. After each video, you will be asked to
describe the creatures’ relationship with each other. The relationship
could be Friendly/Cooperative, Neutral, or Adversarial/Competitive.
(Fig. 1, Supplementary Fig. 1).

Participants were not told that these agents were pursuing spe-
cific goals. Following the instructions, participants were shown one
example each of a typical “friendly”, “neutral”, and “adversarial”
interaction. In each trial, the participants were asked to rate the rela-
tionship between the two creatures. Each participant rated 23 ran-
domly ordered videos, including a random subset of 20 videos from
the dataset and the three example videos that were shown in the
instruction phase of the study as catch trials. Participants who did not
complete the experiment or rate all three catch trials correctly were
excluded from further analysis (77 participants excluded from the
standard-set experiment, and 36 from the generalizationset experi-
ment). We had a total of 318 participants in the standard-set (ages:
18–68, mean age = 28; sex: 157 Female, 148 Male, 13 Unspecified) and
103 participants in the generalization-set (ages: 19–72, mean age = 37;
sex: 55 Female, 46 Male, 2 Unspecified). After exclusions, we were left
with 241 participants for the standard dataset and 67 participants for
the generalization set, with 10–15 ratings per video for the standard set
(median number of ratings = 11.5), and 10–19 ratings per video for the
generalization set (median number of ratings = 10). The sample size for
this experiment was chosen such that there were at least 10 ratings per
video, based on prior work with the same dataset26. Sex, gender, age,
and ethnicity were not considered in the experimental design, and this
informationwas self-reported before the experiment. The participants
were compensated at a rate of $10 per hour and the median time to
complete the experiment was 15min.

We used the mode of the human ratings as the ground truth for
model training and evaluation (Yvideo_i =mode(Rvideo_i)). We also cal-
culated the overall human agreement (HA) for each video as the ratio
of the ratings equal to the mode of the ratings (HAvideo_i =
|Rvideo_i == Yvideo_i | / |Rvideo_i | ). Then we averaged across videos to get
theoverall humanagreement for the train set and test set (μ(HAvideo_i)).
This was done to get an estimate of the noise ceiling that takes into
account the ambiguity in judging relationships, which therefore also
existed in the models’ training data.

Human Gaze Communication Dataset (Gaze)
We used the VACATION (Video gAze CommunicATION) dataset con-
sisting of 299 videos from YouTube with people interacting with each
other and with objects in dynamic, natural contexts. Videos in the
original dataset ranged in length from 2 to 64 s (56 to 1863 frames,
median260 frames), and containedmultiple different gaze events. The
gaze communication labels provided include “non-communicative”,
“mutual gaze”, “gaze aversion”, “gaze following”, and “joint attention”.
Labels were collected by two human annotators in the original paper.
As described in their methods, in videos where the two annotators
disagreed a third specialist in the field assigned the label. We boot-
strapped 20 train/test splits of 224/75 videos and then divided each
video into shorter clips (median 50 frames) such that each clip only
contained one type of gaze communication. Clips from the same video
were kept together in either the train or test set to avoid having visually
similar video clips across the two sets. To facilitate graph creation and
help standardize graph size, we only kept clips with at least 2 people
and a maximum of 5 entities (people + objects). After removing clips
with anomalies (missing or inconsistent labels, e.g., single agent with
“mutual gaze” label), we had ~740 video clips for training and ~215 clips
for testing in each bootstrap. See Fan et al., 2019 for more details on
the original dataset.

SocialGNN
Graph creation. For each video we created a graph (Gin

t) at each time
step/frame (Fig. 2). The nodes (Vinp

t) in the graph were the entities
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(agents/objects) in the frame, the node features were various visuos-
patial properties of the entities, and the edges represented a rela-
tionship between the entities. For the PHASE dataset, node features
included 2D position, 2D velocity, angle, size, and whether that entity
was an agent or object. A bidirectional/undirected edge (Einpt) was
added between two entities if they were in physical contact. Each
graph also gets contextual information in the form of walls and land-
marks coordinates.

For the Gaze dataset, node features were obtained by passing
pixel information within that entity’s bounding box through a pre-
trained VGG19 network30. The output from the penultimate fully con-
nected layer was reduced to 20 dimensions via PCA and this feature
vector was appended with the 4D coordinates of the bounding box
(representing the location and size of the entity) and a boolean vari-
able denotingwhether it was an agent (person) or an object. The edges
(Einpt) in these graphs were directed and are determined based on the
labeled gaze direction of each agent. While gaze and bounding box
information was provided in the Gaze dataset, this information is
extractable via a range of bottom-up computer vision algorithms. For
both datasets, the edges were binary and had no features.

Model architecture. At each timestep, the graph representationof the
video frame (Gin

t: Vinp
t, Einpt) is passed to a module called Gspatial,

which learns an updated edge representation that takes into account
the graph structure and features of all nodes. Specifically, the Gspatial
module consists of a function ϕe: a linear layer that takes in the con-
catenated node features from nodes on each side of an edge, along
with context information (Supplementary Fig. 3a), and outputs an
updated representation for that edge. Updated representations for all
the edges at a given time step are concatenated (Gspatial

t) and then
passed to the Gtemporal module where a Long short-term memory
(LSTM) unit (function ϕs) combines the current representation
(Gspatial

t) with the information from previous time steps (Gstate
t-1). This

is repeated at each time step in a recurrent neural network (RNN)-like
structure. The representation at the final time step (T) is passed
through a linear classifier that is trained to predict the social interac-
tion (Y) (e.g., friendly, neutral, or adversarial) (Fig. 3a and Fig. 3b).
(Refer to Supplementary Methods: Experimental Settings for detailed
parameter settings).

Due to the nature of the gaze dataset labels (provided for each
agent), we evaluated a modified version of SocialGNN that makes
predictions based on learned node, rather than edge, representations
(Supplementary Figs. 2, 3b). The model operated the same as above,
but with an additional process at each time step. Specifically, after
updating edge representations as described above, node representa-
tions are updated using a Linear layer (function ϕv) that takes in, for
each node, a concatenation of its node features and the sum of
updated edge representations for all the edges that node is a part of
(function ρe−>v), and outputs an updated node representation. After
this linear layer, updated representations for all the nodes are con-
catenated (Gspatial

t) and then passed on to the Gtemporal module
(Supplementary Fig. 3). This model provided similar performance to
the unmodified SocialGNN (reported in the main text) on the PHASE
dataset (Supplementary Fig. 4).

Benchmark models
VisualRNN. We compared SocialGNN to a baseline visual model with
the same broad RNN architecture and input, but without the graph
structure, called VisualRNN (Fig. 3c). This model gets the same input
information as SocialGNN, but instead of the graph input and pro-
cessing the LSTM takes in concatenated features of all the entities in
the scene (Fint). We also compared SocialGNN with a modified version
of this model: VisualRNN-Rel, where along with the entity features, a
boolean vector denoting which edges are present is appended, to
match the binary edge information provided to SocialGNN. For the

PHASE videos, to provide context information to the model, we fol-
lowed the same procedure described for SocialGNN: we appended 2D
coordinates of the 3 walls and 4 landmarks to the concatenated fea-
tures (Fint) before passing it to the LSTM.

Trainable parameters, such as learning rate, regularization para-
meter, and sizes of all Linear/MLP/LSTM layers, are set to be similar
across SocialGNN and matched visual models, and the hyperpara-
meters for eachmodel are tunedusing 5-fold stratified cross-validation
(see Supplementary Methods: Experimental Settings for detailed
parameter settings).

Inverse planning. We also compared ourmodel’s performance on the
animated videos (PHASE) with a generative inverse planning model
called SIMPLE26. For each video, SIMPLE generates a hypothesis for the
possible physical/social goals and relationships of the agents, simu-
lates trajectories corresponding to these hypotheses, and compares
these simulated trajectories to the observed trajectories of the entities
in the video. The model selects the relationship with the best match
between simulated and observed trajectories. To reduce its search
space, SIMPLE first shortlists a set of hypotheses using a trained
bottom-up model. These hypotheses are then updated over multiple
iterations of trajectory simulation. For trajectory simulation, SIMPLE
uses a hierarchical planner for each agent that generates subgoals and
actions for a hypothesis. These actions are then executed via the
physics engine to get the simulated trajectory. Formoredetails refer to
themodel paper26. For comparison on the standard PHASE dataset, we
got the predictions for all videos (except one video among the 400
where the model gave a NaN value) and calculated the performance
accuracy for each bootstrap.

VGG19. We also compared our SocialGNN model with a standard
visual CNN on the natural videos (Gaze dataset). We took a pretrained
VGG19 (pretrained on ImageNet30). Although thismodel was trained to
recognize objects, it has been shown that its learned representations
generalize to different high-level visual tasks with fine-tuning41,42. We
selected a model that operates on images (in our case frames of each
video) rather than videos, since CNNs that operate on dynamic input
have a large number of trainable parameters (requiring large training
sets) and have been shown to have worse cross-task generalization43.
We input pixel information from each entire frameof each video to the
model. The output from the penultimate fully connected layer is then
taken and reduced to 1500 dimensions using PCA. We averaged these
features across frames for each video clip and passed it through a
linear layer that we train to either do the 2-way or the 5-way classifi-
cation on the Gaze dataset using the same cross-validation procedure
as SocialGNN and the RNN models. While we do not have the scale of
dataset to relearn all the model weights via backpropagation, our
procedure is equivalent to fine-tuning the model on our tasks. See
Supplementary Methods: Experimental Settings for trainable para-
meter settings such as learning rate, regularization parameter and
class weights.

Representational similarity analysis
We conducted a Representational Similarity Analysis on the PHASE
datasets to do an item-wise comparison between the two top per-
forming models: SocialGNN and the Inverse Planning model (SIMPLE).
We first created Representational Dissimilarity Matrices (RDMs) for
both the models. For SocialGNN, we took the output of the final RNN
step as the representation of a video, and for SIMPLE, we took the
predicted probabilities for each hypothesis (friendly/neutral/adver-
sarial) as the representation. Then, for each model, we calculated one
minus the Pearson correlation between the representations of each
pair of videos to give us the RDM for that model (using rsatoolbox44).
Similarly, we created an RDM for the human ratings on these videos
using the counts of “friendly”, “neutral”, and “adversarial” ratings given
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to that video by all participants and standardize this array to sum to 1.
For example, if a video was rated friendly by 8 participants, adversarial
by 2, and neutral by 0, then the human ratings representation for that
video would be (0.8, 0, 0.2). This representation captures the ambi-
guity in human ratings. Using these, we again calculate one minus the
Pearson correlation between the representations of eachpair of videos
to give us the Human Ratings RDM.

We created these three RDMs for test videos in each bootstrap in
the standard set, as well as the videos in the generalization set. To
calculate the similarity between the computational models and human
judgements we calculated the Spearman correlation between each
model’s RDM and the Human Ratings RDM. For the standard set, we
reported the mean correlation across bootstraps. To measure unique
variance explained by each model, we calculated the semi-partial
Spearman correlation between each model RDM and Human Ratings
RDM while controlling for the other model.

Statistical inference
To test the significance of our model comparisons, we used scipy.s-
tats’s non-parametric paired permutation testing functionwith 10,000
resamples (shuffling within each bootstrap). We report Holm-
Bonferroni corrected two-sided p-values. The p-values for compar-
isons on the PHASE standard set, are calculated using 1024 permuta-
tions instead of 10,000, which is the total number of distinct paired
permutations possible with ten bootstrapped values.

In the RSA, for calculating the significance of the correlations and
semi-partial correlations, we use permutation testing with 10,000
permutations of the video label. We again report two-sided p-values.
For p-values for the correlations/semi-partial correlations on the
PHASE standard set, we averaged across bootstraps to get the null
distribution and compared it to the true mean across bootstraps.

Estimating computational resources consumed
We get the amount of computational resources consumed by each
model for prediction, using the “CPU Utilized” and “Memory Utilized”
reported by the Slurm workloadmanager on the JHU Rockfish cluster.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Human behavior data included in this paper, along with the processed
annotations from the PHASE26 and Gaze29 datasets are available on
Github (https://github.com/Isik-lab/SocialGNN) and Zenodo (https://
doi.org/10.5281/zenodo.8433260)45. The original videos and annota-
tions can be downloaded from https://tshu.io/PHASE for the PHASE
dataset, and requested from https://github.com/LifengFan/Human-
Gaze-Communication for the Gaze dataset. Both raw and processed
files have been provided for the human behavior data. Source data for
all figures are provided with the paper. Source data are provided with
this paper.

Code availability
The analysis code and instructions to use the code are available on
Github (https://github.com/Isik-lab/SocialGNN) and Zenodo (https://
doi.org/10.5281/zenodo.8433260)45.
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