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Seeing social touch triggers a strong social-affective response that involves multiple brain networks, including visual, social
perceptual, and somatosensory systems. Previous studies have identified the specific functional role of each system, but little
is known about the speed and directionality of the information flow. Is this information extracted via the social perceptual
system or from simulation from somatosensory cortex? To address this, we examined the spatiotemporal neural processing of
observed touch. Twenty-one human participants (seven males) watched 500-ms video clips showing social and nonsocial
touch during electroencephalogram (EEG) recording. Visual and social-affective features were rapidly extracted in the brain,
beginning at 90 and 150ms after video onset, respectively. Combining the EEG data with functional magnetic resonance
imaging (fMRI) data from our prior study with the same stimuli reveals that neural information first arises in early visual
cortex (EVC), then in the temporoparietal junction and posterior superior temporal sulcus (TPJ/pSTS), and finally in the
somatosensory cortex. EVC and TPJ/pSTS uniquely explain EEG neural patterns, while somatosensory cortex does not con-
tribute to EEG patterns alone, suggesting that social-affective information may flow from TPJ/pSTS to somatosensory cortex.
Together, these findings show that social touch is processed quickly, within the timeframe of feedforward visual processes,
and that the social-affective meaning of touch is first extracted by a social perceptual pathway. Such rapid processing of social
touch may be vital to its effective use during social interaction.
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Significance Statement

Seeing physical contact between people evokes a strong social-emotional response. Previous research has identified the brain
systems responsible for this response, but little is known about how quickly and in what direction the information flows. We
demonstrated that the brain processes the social-emotional meaning of observed touch quickly, starting as early as 150 ms af-
ter the stimulus onset. By combining electroencephalogram (EEG) data with functional magnetic resonance imaging (fMRI)
data, we show for the first time that the social-affective meaning of touch is first extracted by a social perceptual pathway and
followed by the later involvement of somatosensory simulation. This rapid processing of touch through the social perceptual
route may play a pivotal role in effective usage of touch in social communication and interaction.

Introduction
Touch evokes a strong social and emotional response in third-
party observers as well as the direct recipient (Hertenstein et
al., 2006a, 2009). During mere observation, humans accurately
extract the social-affective meaning of a touch gesture, with
high interobserver reliability (Lee Masson and Op de Beeck,
2018). For example, it is easy to understand how a warm
embrace between a couple can be pleasant and emotionally
arousing, while an accidental push from a stranger in a line
can be unpleasant but not as arousing. The functional mag-
netic resonance imaging (fMRI) literature suggests viewing
social touch increases posterior insula responses to observed
social touch (Morrison et al., 2011; but see Ebisch et al., 2011)
and leads to shared somatosensory responses between self-
experienced and observed social touch (Ebisch et al., 2008,
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2011; Gazzola et al., 2012). Further, the social-affective mean-
ing of observed touch is represented in social-cognitive brain
areas, including temporoparietal junction and posterior supe-
rior temporal sulcus (TPJ/pSTS), as well as somatosensory cor-
tex, and observing social touch leads to enhanced functional
communication between these regions (Lee Masson et al., 2018,
2020).

These results suggest that observed touch is understood
not only from direct perceptual signals, but also via somato-
sensory simulation (for review, see Peled-Avron and Woolley,
2022). Somatosensory simulation has been shown to vary
greatly between individuals based on the degree of emotional
empathy, attitude toward social touch, and autistic traits (Gallese
and Ebisch, 2013; Giummarra et al., 2015; Peled-Avron et al.,
2016; Peled-Avron and Shamay-Tsoory, 2017; Lee Masson et al.,
2018, 2019). However, recent work has called into question the
direct role of simulation in other aspects of social perception like
action recognition (Caramazza et al., 2014). Because of the slow
temporal resolution of fMRI, it is difficult to understand the
direction of information flow between somatosensory and social
perceptual brain regions.

Prior electroencephalogram (EEG) studies have investi-
gated the neural processing of social touch observation,
mostly focusing on the m rhythm indexing somatosensory
simulation and event-related potentials (ERPs; Peled-Avron
et al., 2016; Schirmer and McGlone, 2019; Addabbo et al.,
2020). A few prior studies have provided initial insight into
how fast the brain processes an observed touch event, and
found the observation of another person receiving simple,
nonsocial touch, such as a paintbrush touching a hand,
evoked early involvement of somatosensory ERPs (Adler
and Gillmeister, 2019; Rigato et al., 2019a,b). In contrast,
adding social-affective complexity to a touch scene results in
longer processing time reflected by increases in P100 and late
positive potential (Peled-Avron and Shamay-Tsoory, 2017;
Schirmer and McGlone, 2019). However, no prior study on
social touch has directly linked stimulus features to EEG
timeseries, so it remains to be seen how quickly visual and social-
affective features of observed touch are processed. Furthermore,
although the involvement of the somatosensory cortex has been
suggested in these EEG studies, spatial localization with EEG is
often inconclusive.

Here, we ask whether social touch features are processed via
social perception or somatosensory simulation. To answer this
question, we apply new methods in fMRI-EEG fusion (Cichy
and Oliva, 2020), and use representational similarity analysis
(RSA) to link stimulus features, fMRI multivoxel patterns, and
EEG activity patterns from observed touch scenes. In particular,
we examine how fast each social-affective feature is processed, as
well as the time course of feature representations in different
brain regions, including early visual cortex (EVC), TPJ/pSTS and
somatosensory cortex. If somatosensory simulation drives
social touch perception, we would expect the neural patterns
from somatosensory cortex to correlate with earlier EEG ac-
tivity patterns than TPJ/pSTS. However, we find the opposite
results: EEG signals correlate first with EVC followed by TPJ/
pSTS, and finally somatosensory cortex. We further find that
while EVC and TPJ/pSTS each share unique variance with
EEG neural patterns and social-affective features, somatosen-
sory cortex does not. Together, these results indicate that
social-affective features in observed touch scenes are directly
extracted via a social perceptual pathway without direct soma-
tosensory simulation.

Materials and Methods
Participants
A total of 21 participants (male¼ 7, mean age¼ 20.9 years, age range
18–32 years) took part in the EEG study. They all reported normal or
corrected-to-normal vision. A total of 20 participants were recruited
through the Johns Hopkins University SONA psychological research
portal and received research credits as compensation for their time. One
participant was compensated with a monetary reimbursement. They
provided written informed consent before the experiment. The study
was approved by Johns Hopkins University Institutional Review Board
(protocol number HIRB00009835).

Stimuli
We used a stimulus set developed and validated in a previous study (Lee
Masson and Op de Beeck, 2018). The original stimulus set consisted of
39 social and 36 nonsocial 3-s videos. Social videos showed 18 pleasant,
three neutral, and 18 unpleasant human-human touch interactions, such
as hugging or slapping a person. Nonsocial videos showed human-object
touch manipulation that are matched to the social videos in terms of bio-
logical motion, such as carrying a box or whacking a rug (Fig. 1).

For the current study, all videos were trimmed to a duration of 0.5 s
centered around the touch action to improve time-locking to the EEG
signal. Each video contained 13 frames of 720 (height)� 1280 pixels in
size. To ensure trimming the videos did not alter the perceived valence
and arousal of touch events, we had human annotators from the online
platform Amazon Mechanical Turk rate the valence and arousal of each
video. We found ratings were highly correlated between the trimmed
and full-length videos (Spearman r¼ 0.96 for valence and 0.94 for
arousal).

EEG experimental procedure and design
During the EEG recording, participants were seated comfortably on a
chair and viewed the videos displayed on a back-projector screen in a
Faraday chamber (visual angle: 15� 13°, distance from the screen:
45 cm). They were instructed to view each video and press a button on a
Logitech game controller when they detected two consecutive videos
that were identical (One-Back task). These catch trials, involving partici-
pants’ motor responses, were excluded from the analysis. This orthogo-
nal task aimed to get participants to pay attention to the videos. Each
block (N¼ 15) consisted of 83 trials, with the 75 videos presented once
in a pseudo-random order and four catch trials (i.e., four randomly
selected videos were shown twice).

The videos were shown using an Epson PowerLite Home Cinema
3000 projector. A light-sensitive photodiode was used to track the onset
and offset of video presentation on the projector screen to account for
delays between the time that the computer-initiated stimulus presenta-
tion and the time that the stimulus was displayed. Each trial started with
a black fixation cross on a white background screen, shown for a random
duration between 1 and 1.5 s, followed by a 0.5-s video. The total dura-
tion of each block was ;2.4min. After each block, participants were
encouraged to take a break for as long as needed before continuing with
the following block. The experiment consisted of 1245 trials and took
,1 h, including breaks.

The experiment was run using the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997; Kleiner et al., 2007) in MATLAB (R2020a, The
Mathworks). The EEG experiment employed a within-subject design,
with EEG neural activity as the dependent variable, and stimulus features
and fMRI neural patterns as the independent variables.

EEG acquisition and preprocessing
During the experiment described above, the EEG data were continuously
collected with a sample rate of 1000Hz using a 64-channel Brain Products
ActiCHamp system with actiCAP electrode caps (Brain Products GmbH).
An electrolyte gel was applied to each electrode to improve impedances.
We aimed to keep electrode impedances below 25 kV throughout the
experiment. The Cz electrode acted as an online reference.

MATLAB R2020a and the FieldTrip toolbox were used for EEG data
preprocessing (Oostenveld et al., 2011). First, we corrected for lags
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between the stimulus triggers and the stimulus presentation on the pro-
jector screen by aligning the EEG data to the stimulus onset defined by
the photodiode. The data were segmented into 1.2-s epochs (0.2 s presti-
mulus to 1 s poststimulus onset). Next, the data were baseline-corrected
using the 0.2 s prestimulus and high pass filtered at 0.1Hz to remove
slow drifts.

For artifact rejection, we discarded bad channels and trials contami-
nated with muscle or eye artifacts. Data were bandpass filtered from 110
to 140 Hz, and a Hilbert transformation was applied. Timepoints with a
z-value above 15 were considered to belong to muscle artifacts and
removed. In addition, channels and trials with high variance were man-
ually rejected using the ft_rejectvisual function in FieldTrip. Afterward,
independent component analysis was performed to detect eye move-
ment components and remove eye artifacts from the data. Catch trials
and any trials with participants’ motor responses were excluded from
the analysis. This preprocessing step yielded, on average, 11226 50 trials
and 62.66 1.27 channels. Only participants with no more than six
channels removed were kept, resulting in one participant being
excluded from further analysis. Lastly, preprocessed data were re-refer-
enced to the median across all channels, low-pass filtered at 100Hz,
and downsampled to 500Hz.

Event-related potential analysis
We performed ERP analysis to investigate when and where the brain
shows different neural responses to social versus nonsocial touch. ERPs
from all trials were averaged for each condition and participant using
the ft_timelockanalysis function in the FieldTrip toolbox. For group-
level analysis, the grand averaged ERPs over participants for each condi-
tion were computed using the ft_timelockgrandaverage function. As
described above, noisy channels were excluded from each participant’s
data, and group-level ERP analysis included 48 channels common to all
20 participants. Differences between the two conditions were calculated
and visualized with the ft_math and ft_topoplotER functions, respec-
tively. For statistical inference, ERPs were averaged across successive
100-ms time slices for each channel, from 0.2 s prestimulus to 1 s poststi-
mulus onset. A t test was performed with the Bonferroni correction at an
a level of 0.05 to determine brain response differences between the two
conditions using the ft_timelockstatistics function, and we report z
scored t values.

Pairwise EEG decoding analysis to construct representational
dissimilarity matrices
We performed time-resolved multivariate pattern analysis to link the
EEG neural activity patterns to (1) stimulus features and (2) the fMRI
multivoxel patterns of the early visual cortex (EVC), social brain regions:
TPJ/pSTS, and the somatosensory cortex (Fig. 2). Before decoding, each
participant’s preprocessed EEG data were randomly split into two folds
for cross-validation. To improve the signal-to-noise ratio (Dima et al.,

2022), we created pseudo-trials by averaging six to eight trials corre-
sponding to the same stimulus. Multivariate noise normalization was
also performed (Guggenmos et al., 2018). Finally, time-resolved pairwise
EEG decoding analysis was performed using a linear support vector
machine classifier implemented in the LibSVM library (C.C. Chang and
Lin, 2011). Voltages from all EEG channels were considered features at
each time point. The process was repeated ten times, and decoding accu-
racies were averaged over all iterations for each participant. Decoding
performance was used to create a time-resolved EEG neural representa-
tional distance matrix (RDM), in which high decoding accuracy results
in patterns that are more different from one another while low accuracy
results in patterns that are more similar (Fig. 2). Since decoding is only
performed to generate the RDM, decoding results are not reported in
Results. Instead, Figure 2, bottom panel, includes the group-level decod-
ing results, averaged across all pairs of stimuli and participants. Note
that the time course of group averaged decoding accuracy was similar to
results observed in previous studies using visual stimuli (Isik et al., 2020;
Dima et al., 2022).

EEG to feature representational similarity analysis
Pairwise decoding results were used to generate each participant’s time-
resolved neural EEG RDMs, which were correlated to six stimulus fea-
tures and three brain regions from the fMRI data. Features included
three visual features (a low-level visual feature, motion energy, and per-
ceived biological motion similarity between video pairs) and three
social-affective features (sociality, valence, and arousal). How each of the
six feature RDMs was generated is briefly described below.

(1) The low-level visual feature was extracted from the first convolu-
tional layer of AlexNet (Krizhevsky et al., 2012), pretrained on the
ImageNet dataset (Russakovsky et al., 2015), using PyTorch (version
1.4.0). Layer 1 was chosen as it captured early visual responses well in a
previous EEG study that also used video clips depicting everyday actions
(Dima et al., 2022). The middle frame of each 0.5-s video clip was nor-
malized, resized to 640� 360 pixels, and became an input to the first
layer of AlexNet. The size of the kernels for the first layer is 11� 11,
resulting in an output size of 89� 159 � 64 for each stimulus. The
Euclidean distance between the resulting features for each pair of videos
was used to generate the low-level visual RDM. (2) For motion energy,
we estimated optical flow for each pixel of every video frame using the
Farneback method implemented in MATLAB. The sum of optic flow
across all pixels for each frame was calculated for each video 13 frames
� 75 videos). The Euclidean distance between all video pairs was used to
generate a motion energy RDM. (3) In a separate study [H Lee Masson,
unpublished data; approved by the Social and Societal Ethics Committee
of KU Leuven (G-2016 06 569)], 45 participants who provided written
informed consent before the experiment viewed all pairs of videos and
made judgments on biological motion similarity using a seven-point
Likert scale (“How similar are the movements of human touches in the

Figure 1. A few example frames of video clips in two categories (social and nonsocial). Images in a yellow box show representative frames of social touch videos. The top row shows exam-
ples of pleasant touch events and the second row unpleasant touch events. Frames of nonsocial touch videos displaying matched human-object interactions are shown in a blue box. This figure
is published in compliance with a CC-BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) and is re-used from Figure 1 in the original study (Lee Masson et al., 2018). The
complete set of original video materials is available at https://osf.io/8j74m/.
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two videos?,” 1, very distinct; 7, identical). The pairwise similarity ratings
were averaged across participants and subtracted by 7. The resulting
scores were used to generate a biological motion RDM. (4) The sociality
of each video, here defined as the social versus nonsocial content of
touch, is a binary feature. The distance between pairs of videos from the
same category was expressed as 0 (same), while videos from different
categories were assigned distances of 1 (different) in the matrix. (5) For
valence and (6) arousal of touch, we re-used ratings of 37 participants
from our two previous studies (Lee Masson and Op de Beeck, 2018; Lee
Masson et al., 2019) and generated both RDMs by calculating the abso-
lute value of the rating differences for each pair of stimuli. Plots illustrat-
ing the sociality, arousal, and valence RDM can be found in Figure 2 of
our previous study (Lee Masson et al., 2018).

A rank correlational method was used to link each participant’s
time-resolved EEG neural RDMs to each stimulus feature. As a follow-
up analysis, we fit a multiple regression model with all six features as

predictors of EEG neural patterns. Finally, a post hoc analysis was per-
formed employing a multiple regression model to examine whether the
features describing the body parts involved in giving and receiving touch
predict neural patterns during social touch observation. Two feature
RDMs were devised to capture either the body part used for initiating
touch (giving touch), including the torso (with nine videos), hand
(N¼ 24), arm (N¼ 3), and elbow (N¼ 3), or the body part that was
touched (receiving touch), including the torso (with nine videos), arm
(N¼ 24), hand (N¼ 3), and abdomen (N¼ 3). Note that these features
show high correlation (r¼ 0.65).

All analyses were performed using 10-ms sliding windows with an
overlap of 6ms of EEG neural activity. We calculated leave-one-sub-
ject-out correlation where each subject’s EEG signals were correlated
with the group average (excluding that subject) and the average across
held out subjects was used as a measure of the noise ceiling. (Nili et al.,
2014).

Figure 2. Experimental and analysis overview for evaluating how EEG signals correlate to six stimulus features as well as the fMRI multivoxel patterns of three ROIs. Top panel, Three visual
and three social-affective features were extracted from each video. Euclidean distance was calculated between all pairs of stimuli to generate representational distance matrices (RDMs) for
each feature. deep neural network (DNN) layer 1 and sociality RDMs are visualized. Blue in the matrices indicates high similarity, while yellow indicates high dissimilarity for each stimuli pair.
Middle panel, Activated voxels during video viewing in three ROIs are shown. Voxels in bright yellow in the brain map indicate activations found in all 37 fMRI participants while voxels in dark
red indicate activations found in one participant. Across these voxels, dissimilarity (1-correlation) was calculated between all pairs of stimuli to generate fMRI RDMs. RDMs of three ROIs are
visualized. Bottom panel, EEG signals from 21 participants were recorded during video viewing. Pairwise decoding accuracy was calculated at each time point with a 2-ms resolution and used
to generate time-resolved EEG RDMs. The horizontal line in the decoding accuracy plot marks significant time windows where observed accuracy is above chance (one-tail sign permutation for
group-level statistics, cluster-corrected p, 0.05). EEG RDMs at 0 and 200 ms poststimulus onset are visualized. EVC¼ early visual cortex, TPJ/pSTS¼ temporoparietal junction/posterior supe-
rior temporal sulcus, SC¼ somatosensory cortex.
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EEG to fMRI representational similarity analysis
To examine spatiotemporal neural dynamics during touch observation,
we correlated time-resolved EEG neural RDMs to fMRI activity RDMs.
fMRI data were collected in our previous studies where 37 neurotypical
adults viewed the original version of the touch stimuli (3-s video clips)
and received positive and negative affective touch during a somatosen-
sory localizer scan (Lee Masson et al., 2018, 2019). Full details on fMRI
data acquisition and preprocessing procedure can be found in our previ-
ous study (Lee Masson et al., 2018). fMRI data analysis related to the cur-
rent RSA methods is summarized below.

Neural RDMs of three regions of interest (ROIs), EVC, TPJ/pSTS,
and somatosensory cortex, were included in the current study. We chose
to focus on these three ROIs to test whether the social-affective meaning
of observed touch is extracted first through social perceptual regions
(TPJ/pSTS) or through simulation from the somatosensory cortex. Both
regions were shown to contain significant information about social
touch and be functionally connected in our previous fMRI study (Lee
Masson et al., 2018, 2019, 2020). EVC was included as a reference region
for early visual processing. For EVC and TPJ/pSTS, visually responsive
voxels (i.e., voxels showing increased responses to videos vs rest) were
selected within a corresponding anatomic template, i.e., Brodmann area
17 from the SPM Anatomy toolbox (Eickhoff et al., 2005), and TPJ from
connectivity-based parcellation atlas (Mars et al., 2012). We name the
latter region TPJ/pSTS as the TPJ template includes voxels that are also
part of pSTS, and our voxel definition is likely to extract perceptual voxel
responses. To define an ROI involved in somatosensory simulation, a
separate touch localizer was used to identify voxels that respond to self-
experienced affective touch within an anatomic template, Brodmann
area 2 from the SPM Anatomy toolbox. Pleasant and unpleasant touch
were delivered on the ventral forearm (instead of a hand or a thigh) dur-
ing this localizer to roughly match the body area involved between
receiving and observing touch conditions, as most of the videos show a
toucher using their hand to touch a receiver’s arm. Identified voxels in
the somatosensory cortex represent received touch and thus would rep-
resent observed touch through simulation of this process (Lee Masson et
al., 2018, 2019). The pairwise correlation between all voxels in each ROI
was used to create fMRI neural RDMs and capture the differences in
multivoxel neural response patterns between each video pair. A rank
correlational method was used to link each participant’s time-resolved
EEG neural RDMs to each ROI.

Figure 3 shows pairwise correlations between the RDMs of six fea-
tures and three ROIs from the fMRI data. A strong correlation between
sociality and perceived arousal of touch was observed (r¼ 0.64). As
found in the previous study (Lee Masson et al., 2018, 2019), TPJ/pSTS
strongly represents sociality of observed touch (r¼ 0.51), with this
region showing significant neural pattern similarity with the somatosen-
sory cortex (r¼ 0.26).

Variance partitioning
A time-resolved variance partitioning approach was adopted to examine
(1) the unique contribution of the three key brain regions to the EEG sig-
nal to characterize the direction of information flow between them, and
(2) their shared contribution with the sociality feature to EEG signals.
We focus on the sociality feature as TPJ/pSTS and somatosensory cortex
both represent the social content of observed touch (Lee Masson et al.,
2018, 2019).

To this end, we fit seven different multiple regression models with
every possible combination of the three ROIs: EVC, TPJ/pSTS, and
somatosensory cortex (i.e., each ROI alone, all three combinations of
pairs, and the combination of all three), as well as seven combinations of
sociality with the two key ROIs: sociality, TPJ/pSTS, and somatosensory
cortex. The time-resolved EEG neural RDM averaged across subjects
was the dependent variable in all models. All variables were normalized
before regression analysis. Resulting R2 values from seven regression
models were used to calculate both unique and shared variance. The
amount of unique variance explained by each predictor was calculated as
follows:

UVPOI ¼ R2
X–R

2
X�POI:

R2 is a goodness-of-fit measure for the regression model, repre-
senting the amount of variance explained by a model consisting of
chosen predictors. X reflects three selected predictors included
in the model (e.g., brain regions). POI reflects a predictor of in-
terest (e.g., EVC). X-POI reflects the remaining predictors with-
out the predictor of interest (e.g., TPJ/pSTS, and somatosensory
cortex). UV POI is the amount of unique variance explained by
POI.

The amount of shared variance (SV) explained by every possi-
ble combination of selected predictors was calculated as follows:

Figure 3. Pairwise correlations between predictors (model RDMs). Three visual (labels colored in blue) and three social-affective (labels colored in orange) features, and fMRI responses of
three ROIs (labels colored in red) are included in the RSA. Lower diagonal cells in the matrix contain information about correlation coefficients (r) from pairwise comparisons. White colored
lower diagonal cells indicate no significant correlation between predictors. No significant negative correlation was observed. DNN ¼ deep neural network, MotionE ¼ motion energy,
BioMotion¼ biological motion, EVC¼ early visual cortex, TPJ/pSTS¼ temporoparietal junction/posterior superior temporal sulcus, SC¼ somatosensory cortex.
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1. SV123 ¼ R2
12–R2

2 1R2
3–R2

12–R2
13–R2

23 1R2
123

2. SV12 ¼ R2
13–R2

3 1R2
23–R2

123

3. SV13 ¼ R2
12–R2

2 1R2
23–R2

123

4. SV23 ¼ R2
12–R2

1 1R2
13–R2

123

Numbers next to SV and R2 denote selected predictors. For example,
SV123 is the amount of shared variance explained by all three selected
predictors. R2

12 is the amount of variance explained by a model consist-
ing of the first and the second predictor.

Experimental design and statistical analyses
The sample size was determined based on our previous fMRI study that
employed the same stimulus set (Lee Masson et al., 2018). EEG neural
activity is the within-subject factor and the dependent variable. To
explain the EEG data, we included six features and three fMRI ROIs as
independent variables. Two additional independent variables (features
describing body parts involved in giving and receiving touch) were la-
beled and included in a post hoc analysis. All time-resolved RSA results
were tested against chance using a one-tailed sign permutation test
(5000 iterations). Multiple comparisons across time were controlled by
applying cluster correction with the maximum cluster sum across time
windows and an a level of 0.05.

Data and code accessibility
The current study used analysis code for EEG preprocessing and multivar-
iate analysis used in a previous study (Dima et al., 2022), available on
GitHub (https://github.com/dianadima/mot_action/tree/master/analysis/
eeg). The code for stimulus presentation and ERP analysis is available on
GitHub (https://github.com/haemyleemasson/EEG_experiment). EEG
data are available at https://osf.io/5ntcj/.

Results
Early evoked response differences between social and
nonsocial touch
We compared the ERPs evoked by observed social and nonsocial
touch events to measure the effect of sociality on the magnitude
of ERPs for each channel and time window. We observed wide-
spread differences across the scalp, beginning at 100ms postvi-
deo onset. Anterior sensors showed enhanced activation during
social touch observation (Fig. 4, yellow regions), whereas activa-
tions were stronger at the posterior sensors during nonsocial
touch observation (Fig. 4, blue), perhaps because of the presence
of objects in these videos. In particular, in most of the time win-
dows, observing social touch evoked the strongest activation at
channel F2, located approximately near superior frontal gyrus
(Scrivener and Reader, 2022), whereas P8, located near lateral
occipital cortex, was most activated in nonsocial touch. These
ERP results indicate that the sociality of video clips affects activa-
tions even at early stages of processing.

Social-affective features are processed shortly after visual
features
Using time-resolved RSA, we evaluated the neural dynamics of
touch observation or how quickly different stimulus features
are processed in the brain. To this end, we correlated three vis-
ual and three social-affective features to each participant’s
EEG neural patterns. A group-level RSA revealed that low-level
visual features captured by the first layer of AlexNet correlated
significantly with EEG neural patterns beginning at 90ms post-
stimulus onset, followed by biological motion and motion
energy at 120 and 160ms, respectively (Fig. 5, top). Strikingly,
social-affective features correlated with EEG neural patterns
shortly after visual features, beginning at 150ms postvideo
onset for sociality, 170ms for arousal, and 180ms for valence
(Fig. 5, middle). All six features were spontaneously extracted

in the brain as participants were not directed to any of these
features during the EEG experiment.

In a follow-up analysis, we fit a multiple regression model to
determine the extent to which each feature explained the time-se-
ries EEG neural patterns while accounting for variance explained
by other features. The results of the multiple regression analysis
aligned with those obtained from the rank correlational analysis.
Specifically, low-level visual features, biological motion, and
motion energy started to explain the time-series EEG neural
patterns at 90, 120, and 250ms following the onset of the
video, respectively (Fig. 6). Sociality and arousal of the video
explained time-series neural patterns immediately after the
visual features, beginning at 200 and 210ms, respectively. In
contrast to the findings from rank correlation analysis, the
valence feature did not explain the EEG data once the effects
of other features were controlled for. Nonetheless, our over-
all conclusion remains unchanged: social-affective features,
namely, sociality and arousal, are processed shortly after vis-
ual features.

Lastly, in a post hoc analysis, we fit a multiple regression
model to determine whether two features describing the body
parts involved in giving and receiving touch explained the time-
series EEG neural patterns during the social touch condition
(Fig. 6). The feature capturing which body part was involved in
giving touch started to explain the time-series EEG neural pat-
terns at 190ms following the onset of the video. Surprisingly, the
feature capturing which body part was involved in receiving
touch did not explain the time-series EEG neural patterns.

EEG neural patterns correlate with responses first from early
visual cortex, then TPJ/pSTS, and finally somatosensory
cortex
We tracked the spatial-temporal neural dynamics of touch obser-
vation using EEG-fMRI fusion methods to examine the informa-
tion flow between EVC, TPJ/pSTS, and somatosensory cortex.
These results show a clear order between the neural latencies of
each ROI. We find that neural information first arises in early
visual cortex 50ms postvideo onset, and then in TPJ/pSTS at
110ms, and finally in somatosensory cortex at 190ms (Fig. 5,
bottom). A Mann–Whitney U test showed significant differ-
ences in the onset latencies of all three combinations of pairs
(p, 0.001).

Visual and social perceptual, but not somatosensory, brain
regions explain unique variance in EEG signals during touch
observation
Given the significant correlation between neural patterns in TPJ/
pSTS and those in somatosensory cortex (Fig. 3), it is unclear
whether the time-resolved correlations between those brain
responses and EEG signals (Fig. 5, bottom panel) are driven by
shared or unique variance across different brain regions. Thus,
we examined unique and shared contribution of fMRI responses
in each region to EEG neural patterns using variance partitioning
analysis to further characterize the information flow across the
brain regions involved in touch observation. Variance partition-
ing revealed that EEG neural patterns are uniquely explained by
EVC at 94ms after video onset, then by TPJ/pSTS at 190ms (Fig.
7A). Importantly, somatosensory cortex activity did not explain
any unique variance in the EEG data, but shared variance with
TPJ/pSTS beginning at 206ms (Fig. 7A,B). There was also shared
variance between EVC and TPJ/pSTS at;100ms after the initial
onset of EVC, suggesting feedback from the social brain to EVC
at later time points (Fig. 7B).
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Temporally resolved information in TPJ/pSTS explains
unique variance in social touch observation
Lastly, we asked whether and when the sociality of observed
touch, the feature that explains EEG data the most strongly,
shares variance with TPJ/pSTS or with somatosensory cortex ac-
tivity. We find that TPJ/pSTS responses share variance with
sociality in explaining the EEG data at 180ms after video onset

(Fig. 7C). In contrast, activity in somatosensory cortex alone
does not share variance with sociality. TPJ/pSTS, somatosensory
cortex, and sociality do explain shared variance with EEG signals,
but this is substantially later and weaker than variance explained
by TPJ/pSTS and sociality alone. Together, these results suggest
little direct involvement of somatosensory cortex in representing
the sociality of observed touch.

Figure 4. ERP differences between social and nonsocial touch observation. Topographical scalp maps show the social . nonsocial contrast, averaged across successive 100-ms
time slices. Positive z scores (increased ERP for social touch) are shown in yellow and negative z scores (increased ERP for nonsocial touch) are shown in blue. Channels showing
significant differences in ERPs were labeled with channel names in the scalp map. Channels that did not reach statistical significance were marked with dots to indicate their
locations on the scalp.
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Discussion
We examined the spatiotemporal neural dynamics of social
touch observation. Combining time-resolved RSA, fMRI-EEG
fusion, and variance partitioning analyses (Fig. 2), we for the first
time identified the speed at which each feature of observed touch is
processed (Figs. 5, 6), as well as the direction of information flow
between brain regions. Our results revealed a pathway between early
visual processing and social perception, with only later involvement
of somatosensory simulation (Fig. 7).

Early processing of social-affective meaning of observed
touch
Observing physical contact between two individuals resulted in
greater neural activity in the frontal regions, while observing an
individual touching an object led to stronger neural activity in the
occipital regions (Fig. 4). These findings are consistent with previ-
ous neuroimaging studies showing differential neural responses to
social and nonsocial touch (Peled-Avron et al., 2016; Peled-Avron

and Shamay-Tsoory, 2017; Lee Masson et al., 2018, 2019). Similar
to previous work, the current study suggests that observing two
individuals exchanging touch involves social-cognitive mecha-
nisms, such as mentalizing and emotion recognition (Peled-Avron
and Shamay-Tsoory, 2017; Lee Masson et al., 2018, 2020; Schirmer
and McGlone, 2019; Arioli and Canessa, 2019), whereas recogniz-
ing a touched object requires additional visual processing (Goodale
et al., 1994; Lee Masson et al., 2018, 2020; Wurm and Caramazza,
2022). Concerning the processing speed, ERPs evoked by social
touch were distinguishable from those elicited by nonsocial touch
as early as 100ms after stimulus onset. Overall, the current study
extends earlier findings by revealing that the neural distinction
between social and nonsocial touch is established at an early stage
in neural processing.

A classical ERP method is analogous to a univariate approach
in fMRI, in that both methods unveil the extent to which a chan-
nel or voxel is activated in response to a given stimulus. However,
this univariate method does not provide a comprehensive account
of how the configuration of multiple channels evolves over time or

Figure 5. The time courses of all predictor correlations with EEG data (mean6 SEM shown in light colors). This figure shows group-level spearman correlations between visual (time courses
shown in blue, top panel), social-affective (time courses in yellow, middle panel), and fMRI activity predictors (time courses in red, bottom panel) and the time-resolved EEG neural patterns.
The colored horizontal line in each plot marks significant time windows where observed correlation coefficients are significantly greater than 0 (one-tail sign permutation for the group-level
statistics, cluster-corrected p, 0.05). The noise ceiling, quantified as leave-one-subject-out correlation, is shown in light gray (mean6 SEM).
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how stimulus features are represented in the spatial patterns
(Davis et al., 2014; Pillet et al., 2020). To answer this question, we
employed time-resolved RSA to link EEG spatial patterns to visual
and social-affective features characterizing a touch event (Fig. 2).
Time-resolved RSA revealed that social-affective information,
whether touch is social, pleasant, or emotionally intense, is proc-
essed rapidly and immediately following the processing of low-
level visual features, motion, and body movements (Fig. 5).

To date, no studies have used time-resolved RSA to investi-
gate the temporal dynamics of neural responses during touch
observation. Nonetheless, our findings on the speed of visual
processing during touch observation are consistent with those
reported in other areas of vision research. We found that the
low-level visual features extracted with the first layer of AlexNet
explain EEG neural patterns early, beginning at 90ms after stim-
ulus onset. This finding aligns with previous work investigating
scene perception and action observation using similar methods
(Cichy et al., 2017; Dima et al., 2022). The perception of biologi-
cal motion emerges early as well, beginning at 120ms. The onset

latency observed in the current study is consistent with the tim-
ing of neural processing reported in other studies of biological
motion and action perception (Oram and Perrett, 1994; D.H.F.
Chang et al., 2021; Dima et al., 2022). It is important to clarify
that the term “biological motion” here does not refer to action
categories. Rather, it refers to the perception of body movements.
As an example, body movements required for different actions,
such as hugging a person or carrying a box, are perceived simi-
larly. Regarding motion energy, since we rely on basic optic flow
techniques to calculate motion and the present study is not
designed to focus on motion energy, we remain cautious in pro-
viding detailed interpretation of our results (refer to Bergen and
Adelson, 1985; Dima et al., 2022). While we have addressed the
processing speed of three visual features, there are other high-
level visual features to consider, such as which body part was
used to initiate touch or which body part was touched. Our post
hoc analysis revealed that representations of the body part used
to give touch emerge shortly after visual processing, beginning at
190ms. Surprisingly, the body part used to receive touch did not

Figure 6. The time courses of each feature predicting EEG neural patterns in a multiple regression model (mean6 SEM shown in light colors). This figure shows group-level regression b
coefficients describing the relationship between visual (time courses shown in blue, top panel), social-affective (time courses in yellow, middle panel), and the time-resolved EEG neural pat-
terns. The time courses of two features (the body parts involved in giving and receiving touch) predicting EEG data in a separate multiple regression model are shown in the bottom panel
(time courses in black).
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explain significant variance in the EEG signal. This finding
potentially implies that viewers might direct their attention to-
ward the touch initiator, thereby interpreting the meaning of
social touch. However, the current stimulus set mostly focuses
on the arms and hands and not designed to answer this question.
Creating a novel social touch stimulus set that includes a wider
variety of body parts may help better address this.

We found that the onset latency for processing sociality,
arousal, and valence information of observed touch occurred
within a time frame of 150–180ms. This finding aligns with pre-
vious research that has demonstrated the early processing of per-
ceived valence (145ms) and arousal (175ms) in a variety of
emotional images (Grootswagers et al., 2020). Note that valence
no longer explained EEG neural patterns once the effects of other
features were accounted for. This may be because the valence fea-
ture correlated with other features, such as arousal and biological
motion. Furthermore, the strength of the rank correlation between
valence and time-series EEG neural patterns was relatively moder-
ate in contrast to other features. These two factors likely contrib-
uted to the absence of significant findings when employing a
multiple regression model.

The processing speed of social-affective information varies
and may be influenced by the level of complexity and naturalness
of the stimuli used. Sociality information from simple, well-con-
trolled images is processed rapidly, as indicated by changes in
P100 components (Peled-Avron and Shamay-Tsoory, 2017),

whereas natural stimuli tend to require more time to process
(Isik et al., 2020; Dima et al., 2022). The stimulus set used in this
study focused on body movement without other contextual in-
formation about touch, which may explain the fast processing
times. Further, the sociality model in the current study distin-
guishes between touch directed toward a person and touch
directed toward an object, and as a result, also captures the pres-
ence of either two people or one person in the scene. Further
research is needed to investigate the speed at which social-
affective information is extracted in more ecologically valid
and complex settings, and to explore how the neural dynamics
of social touch interaction differ from social interaction with-
out touch or interaction where two people touch an object to-
gether. Together, the ERP and RSA results presented here
show that the brain detects the social-affective significance of
touch at an early stage, well within the timeframe of feedfor-
ward visual processing (Lamme and Roelfsema, 2000). These
results highlight the importance of touch perception as a fun-
damental aspect of the human visual experience.

The social-affective meaning of touch is initially extracted
through a social perceptual pathway
With time-resolved RSA and variance partitioning analyses,
we determined the direction of information flow between
EVC, TPJ/pSTS, and somatosensory cortex. We demonstrated
that the social-affective meaning of touch is initially extracted

Figure 7. Time-resolved variance partitioning results. Multiple regressions were performed with the time-resolved EEG RDM averaged across subjects as a dependent variable. A, The unique
contributions of the fMRI activity in three brain regions with EEG data. B, The shared contributions of the three brain regions with EEG data. C, The shared contributions of TPJ/pSTS and soma-
tosensory cortex (SC) with the sociality feature. The horizontal line in each plot marks significant time windows (one-tailed sign permutation for the group-level statistics, cluster-corrected
p, 0.05).
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through a social perceptual pathway, followed by the subse-
quent involvement of somatosensory simulation. These find-
ings suggest that touch observation is not mediated by the
reenactment of somatosensory representations, which contra-
dicts the embodiment theory of social perception (Rizzolatti
and Sinigaglia, 2010, 2016). Instead, the somatosensory cortex
appears to receive information from a social perceptual path-
way, as indicated by this region’s absence of unique variance
with EEG neural activity.

Although somatosensory involvement occurs at a later stage,
its contribution to social understanding should not be underval-
ued. Individuals who struggle with social interaction, particularly
in the context of interpersonal touch, tend to exhibit weak or
absent somatosensory activity, which can decrease social bond-
ing (Peled-Avron and Shamay-Tsoory, 2017; Lee Masson et al.,
2018, 2019). The relay of social information from TPJ/pSTS to
the somatosensory cortex may help individuals empathize with
others and comprehend another person’s emotional states at a
more profound level (Schaefer et al., 2012, 2013; Bolognini et al.,
2013; Peled-Avron et al., 2016; Peled-Avron and Woolley, 2022).
Themethodology presented here provides an opportunity for future
work to examine whether the lack of somatosensory simulation in
particular groups of individuals is associated with inadequate infor-
mation flow between social perceptual and somatosensory system.

In conclusion, our study, for the first time, revealed that
social-affective information of observed touch is processed rap-
idly and directly through social perceptual brain regions. Positive
touch plays an important role in establishing and maintaining
social bonds (Hertenstein et al., 2006b; Chatel-Goldman et al.,
2014; Suvilehto et al., 2015). It facilitates effective communica-
tion, fosters greater trust and empathy, and provides relief from
stress, anxiety, and pain, ultimately leading to improved psycho-
logical and physical wellbeing (Debrot et al., 2013; Korisky et al.,
2020; Shamay-Tsoory and Eisenberger, 2021; Packheiser et al.,
2023). While social touch is often associated with positive social
interactions, touch can be used as a potent tool for aggression
(Hertenstein et al., 2006a; Lee Masson and Op de Beeck, 2018).
Negative touch, such as physical assault, can result in physical
pain or emotional distress for a receiver, potentially leading to
adverse health outcomes (De Puy et al., 2015; Stubbs and Szoeke,
2022). Thus, recognizing the dual nature of touch seems essential
for humans. Our findings suggest that the early neural processing
of social and emotional signals conveyed through touch may
play a key role in the successful use of social touch during rap-
idly-changing, real world social interactions.
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